SkillPort
A management toolkit for AI agent skills that provides an MCP server for search-first skill discovery and on-demand loading. It enables users to validate, organize, and serve standardized skills to MCP-compatible clients like Cursor and GitHub Copilot.
README
⚓ SkillPort
<div align="center">
The SkillOps Toolkit for Agent Skills
SkillOps = Validate, manage, and deliver skills at scale.
</div>
Why SkillPort?
| When you... | SkillPort... |
|---|---|
| Use a coding agent without native skill support | Serves via MCP or CLI |
| Build your own AI agent | Provides MCP server, CLI, and Python library |
| Have 50+ skills and need the right one fast | Search-first loading (Tool Search Tool pattern) |
| Check skills before deployment | Validates against the spec in CI |
| Manage skill metadata programmatically | Provides meta commands |
| Find a skill on GitHub | Installs with add <url> |
Fully compatible with the Agent Skills specification.
Features
Validate
Check skills against the Agent Skills specification.
skillport validate # Validate all skills
skillport validate ./skills # Validate specific directory
skillport validate --json # CI-friendly JSON output
Catches missing fields, naming issues, and spec violations before they cause problems.
Manage
Full lifecycle management from any source.
# Add from GitHub (shorthand)
skillport add anthropics/skills skills
# Add from GitHub (full URL)
skillport add https://github.com/anthropics/skills/tree/main/skills
# Add from local path or zip
skillport add ./my-skills
skillport add skills.zip
# Update, list, remove
skillport update # Update all from original sources
skillport list # See installed skills
skillport remove <skill-id> # Uninstall
Metadata
Update skill metadata without editing files manually. Useful for automation and keeping skills consistent across a team.
skillport meta get <skill> <key> # Get metadata value
skillport meta set <skill> <key> <val> # Set metadata value
skillport meta unset <skill> <key> # Remove metadata key
Serve
MCP server for clients that don't natively support Agent Skills.
Inspired by Anthropic's Tool Search Tool pattern — search first, load on demand:
| Tool | Purpose |
|---|---|
search_skills(query) |
Find skills by description (full-text search) |
load_skill(skill_id) |
Get full instructions + path |
Why search matters: With 50+ skills, loading all upfront consumes context and hurts accuracy. SkillPort loads metadata only (~100 tokens/skill), then full instructions on demand.
Works with Cursor, Copilot, Windsurf, Cline, Codex, and any MCP-compatible client.
Quick Start
Install
uv tool install skillport
# or: pip install skillport
Add Skills
# Add from GitHub
skillport add anthropics/skills skills
# Or use a custom skills directory
skillport --skills-dir .claude/skills add anthropics/skills skills
Validate
skillport validate
# ✓ All 5 skill(s) pass validation
Connect to Agents
Choose how to deliver skills to your AI agents:
| Mode | Best for | Setup |
|---|---|---|
| CLI Mode | Agents with shell access (Cursor, Windsurf, Codex, etc.) | Per-project |
| MCP Mode | MCP-compatible clients, multi-project | One-time |
CLI Mode
For agents that can run shell commands. No MCP configuration required.
skillport init # Initialize project
skillport doc # Generate AGENTS.md with skill table
skillport show <id> # Load full instructions for a skill
How it works:
skillport docgenerates a skill table in AGENTS.md- The agent reads AGENTS.md to discover available skills
- When needed, the agent runs
skillport show <id>to load full instructions
MCP Mode
For MCP-compatible clients. Install the server:
uv tool install skillport-mcp
Add to your client's config:
{
"mcpServers": {
"skillport": {
"command": "uvx",
"args": ["skillport-mcp"],
"env": { "SKILLPORT_SKILLS_DIR": "~/.skillport/skills" }
}
}
}
<details> <summary>One-click install for popular clients</summary>
Cursor
VS Code / GitHub Copilot
Kiro
CLI Agents
# Codex
codex mcp add skillport -- uvx skillport-mcp
# Claude Code
claude mcp add skillport -- uvx skillport-mcp
</details>
Organization
Organize skills with categories and tags. Works with both CLI and MCP modes.
Categories & Tags
Use metadata to organize and filter skills:
# SKILL.md frontmatter
metadata:
skillport:
category: development
tags: [testing, quality]
alwaysApply: true # Always available (Core Skills)
Per-Client Filtering
Expose different skills to different agents:
{
"mcpServers": {
"skillport-dev": {
"command": "uvx",
"args": ["skillport-mcp"],
"env": { "SKILLPORT_ENABLED_CATEGORIES": "development,testing" }
},
"skillport-writing": {
"command": "uvx",
"args": ["skillport-mcp"],
"env": { "SKILLPORT_ENABLED_CATEGORIES": "writing,research" }
}
}
}
Configuration
| Variable | Description | Default |
|---|---|---|
SKILLPORT_SKILLS_DIR |
Skills directory | ~/.skillport/skills |
SKILLPORT_ENABLED_CATEGORIES |
Filter by category | all |
SKILLPORT_ENABLED_SKILLS |
Filter by skill ID | all |
SKILLPORT_ENABLED_NAMESPACES |
Filter by namespace | all |
SKILLPORT_CORE_SKILLS_MODE |
Core Skills behavior (auto/explicit/none) |
auto |
Creating Skills
Create a SKILL.md with YAML frontmatter:
---
name: my-skill
description: What this skill does
metadata:
skillport:
category: development
tags: [example]
---
# My Skill
Instructions for the AI agent.
See Creating Skills Guide for best practices.
Skill Sources
| Source | Features | Target | URL |
|---|---|---|---|
| Anthropic Official | Document skills (docx, pdf, pptx, xlsx), design, MCP builder | All users | GitHub |
| Awesome Claude Skills | Curated community collection, 2.5k+ stars | Discovery | GitHub |
| Hugging Face Skills | Dataset creation, model evaluation, LLM training, paper publishing | ML/AI engineers | GitHub |
| Claude Scientific Skills | 128+ scientific skills (bio, chem, ML), 26+ databases | Researchers | GitHub |
| ClaudeKit Skills | 30+ skills, auth, multimodal, problem-solving frameworks | Full-stack devs | GitHub |
| Superpowers | TDD, debugging, parallel agents, code review workflows | Quality-focused devs | GitHub |
| Kubernetes Operations | K8s deployment, monitoring, troubleshooting | DevOps/SRE | GitHub |
Learn More
Development
Status: Work in progress. APIs may change.
git clone https://github.com/gotalab/skillport.git
cd skillport
uv sync
# Run MCP server
SKILLPORT_SKILLS_DIR=.skills uv run skillport-mcp
# Run CLI
uv run skillport --help
# Run tests
uv run pytest
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。