Skills Registry MCP Server
Enables intelligent discovery and management of Claude Skills through semantic search, ratings, favorites, and community curation. Provides tools to search, upload, rate, and organize skills with natural language queries and comprehensive metadata.
README
Skills Registry MCP Server
Intelligent discovery and management of Claude Skills using MCP (Model Context Protocol).
Features
- 🔍 Semantic Search - Find skills using natural language
- ⭐ Ratings & Reviews - Community-curated skill quality
- 💾 Favorites - Save your most-used skills
- 📈 Trending - Discover popular skills
- 📤 Upload - Add custom skills
- 🏷️ Categories & Tags - Organized skill library
Quick Start (Docker)
Prerequisites
- Docker and Docker Compose
- OpenAI API key (for semantic search) or Anthropic API key
1. Clone and Configure
# Copy environment template
cp .env.example .env
# Edit .env and add your API key (use your preferred editor)
# On Mac/Linux: vi .env or code .env
# On Windows: notepad .env
# Or just echo it directly:
echo "OPENAI_API_KEY=sk-your-key-here" >> .env
2. Start Services
# Start PostgreSQL, Redis, and MCP server
docker-compose up -d
# View logs
docker-compose logs -f mcp-server
3. Verify and Import Skills
# Check services are running
docker-compose ps
# Import skills from GitHub (60+ skills from multiple repos)
./scripts/import_github_skills.sh
# Verify import
docker-compose exec postgres psql -U skills -d skills_registry -c "SELECT COUNT(*) FROM skills;"
This will import skills from:
- Anthropic Official Skills (docx, pdf, pptx, xlsx, theme-factory, etc.)
- Obra's Superpowers (test-driven-development, git workflows, etc.)
- Composio Community Skills (changelog-generator, content-research-writer, etc.)
- Other Community Skills (epub, ffuf, tapestry, etc.)
Usage with NCP
Install NCP
npm install -g @portel/ncp
Add Skills Registry MCP
# Add to NCP configuration
ncp add skills-registry npx @your-org/skills-registry-mcp
# Or connect to local Docker instance
ncp add skills-registry http://localhost:8000
Test MCP Tools
# Search for skills
ncp find "pdf extraction"
# List categories
ncp run skills-registry:skill_list_categories
# Get trending skills
ncp run skills-registry:skill_trending --params '{"timeframe":"week"}'
MCP Tools Available
skill_search
Search for skills using natural language or filters.
{
"query": "create presentations with charts",
"category": "documents",
"min_rating": 4.0,
"limit": 10
}
skill_get
Fetch complete skill content and metadata.
{
"skill_id": "pdf-master-v2",
"user_id": "user-123"
}
skill_favorite_add
Add skill to favorites.
{
"skill_id": "docx-advanced",
"user_id": "user-123"
}
skill_rate
Rate a skill 1-5 stars.
{
"skill_id": "xlsx-wizard",
"user_id": "user-123",
"rating": 5,
"review": "Excellent for data analysis!"
}
skill_trending
Get popular skills.
{
"limit": 10,
"timeframe": "week"
}
skill_upload
Add a custom skill.
{
"name": "API Documentation Generator",
"description": "Generate OpenAPI specs from code",
"skill_md_content": "# Skill Content Here...",
"category": "development",
"tags": ["api", "documentation"],
"author_id": "user-123",
"visibility": "private"
}
Development
Project Structure
skills-registry-mcp/
├── docker-compose.yml # Service orchestration
├── Dockerfile # MCP server container
├── init.sql # Database schema
├── requirements.txt # Python dependencies
├── src/
│ ├── __init__.py
│ ├── server.py # FastMCP server
│ ├── database.py # PostgreSQL operations
│ ├── search.py # Semantic search
│ └── models.py # Data models
└── skills_storage/ # Local skill files
Local Development
# Install dependencies
pip install -r requirements.txt
# Set environment variables
export DATABASE_URL=postgresql://skills:skills_dev_password@localhost:5432/skills_registry
export OPENAI_API_KEY=your-key-here
# Run server directly
python -m src.server
Import Existing Skills
# Import skills from /mnt/skills/
python scripts/import_skills.py --source /mnt/skills/ --category core
Database Schema
See init.sql for complete schema. Key tables:
skills- Skill metadata and contentskill_ratings- User ratings and reviewsskill_favorites- User favoritesskill_usage- Analytics trackingskill_stats- Computed statistics view
Configuration
Environment Variables
DATABASE_URL- PostgreSQL connection stringREDIS_URL- Redis connection stringSKILLS_STORAGE_PATH- Local filesystem path for SKILL.md filesOPENAI_API_KEY- For semantic search (optional)ANTHROPIC_API_KEY- Alternative for semantic search (optional)
Docker Compose Services
postgres- PostgreSQL 15 with pgvectorredis- Redis 7 for cachingmcp-server- FastMCP server
Roadmap
- [ ] Phase 1: MVP with local search ✅
- [ ] Phase 2: Semantic search with embeddings ✅
- [ ] Phase 3: Import existing skills from
/mnt/skills/ - [ ] Phase 4: Cloud-hosted registry option
- [ ] Phase 5: Web UI for browsing
- [ ] Phase 6: Skill versioning system
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。