Skillz MCP Server
Enables LLMs to dynamically discover and execute tools through a structured skills system. Serves as a documentation hub where skills are defined in directories, allowing progressive loading and interpretation of capabilities.
README
Mission Control Plane (MCP) Server
Project Overview
This project implements a Mission Control Plane (MCP) server using FastAPI, designed to provide a robust and extensible backend for managing and interacting with various functionalities, referred to as "skills." It leverages Docker and Docker Compose for easy deployment and includes hot-reloading for efficient development.
Features
- FastAPI Backend: A high-performance, easy-to-use web framework for building APIs with Python 3.11.
- Dockerized Deployment: Packaged in a
python:3.11-slimDocker container for consistent environments. - Docker Compose: Simplifies the management and orchestration of the server and its dependencies.
- Hot-Reloading: Automatic code reloading during development for a smooth workflow.
- Skills Feature: A dynamic system allowing LLMs to progressively discover and understand tools/functionalities defined in a structured
skillzdirectory. The MCP server serves as a documentation hub for these skills, enabling LLMs to interpret and execute actions based on the provided skill definitions.
Getting Started
To set up and run the MCP server, ensure you have Docker and Docker Compose installed.
-
Clone the repository:
git clone https://github.com/pwntato/skillz_mcp cd skillz_mcp -
Start the server:
docker compose up -dThis command will build the Docker image (if not already built) and start the server in detached mode.
-
Access the API Documentation: The server will be available at
http://localhost:8000. You can access the interactive API documentation (Swagger UI) by navigating tohttp://localhost:8000/docsin your web browser.
API Endpoints
/: Redirects to the API documentation (/docs)./skills: Returns a list of available skills, including their name, description, andskill_id(derived from the skill's directory name)./skills/{skill_id}/{file_path:path}: Retrieves the content of a specific file within a given skill's directory. This is used by LLMs for progressive loading of skill details and associated scripts.
Skills Development
The "skills" feature allows for dynamic extension of the MCP server's capabilities. Each skill is defined within its own directory under the skillz/ folder. The MCP server acts as a repository for these skill definitions, which are then interpreted and executed by an LLM.
To create a new skill, refer to the detailed instructions in GEMINI.md under the "Development Conventions" section.
Testing
Automated tests are configured using pytest and can be run locally or via GitHub Actions.
To run tests locally (ensure you have pytest and httpx installed in your local Python environment):
PYTHONPATH=. pytest
Contributing
Contributions are welcome! Please refer to GEMINI.md for development conventions and guidelines.
License
This project is licensed under the MIT License. See the LICENSE file for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。