Skulabs MCP Server
Enables AI agents to interact with Skulabs inventory management system through comprehensive tools for managing products, orders, customers, and analytics. Supports voice agents like Retell AI and desktop applications like Claude for natural language inventory operations.
README
Skulabs MCP Server
A Model Context Protocol (MCP) server that exposes Skulabs API functionality as tools for AI agents like Claude, Retell AI voice agents, and other MCP-compatible applications.
Features
Inventory Management
- Get Inventory: Retrieve inventory items by SKU, location, or all items
- Update Inventory: Update quantity for specific SKUs
- Location-based Inventory: Get inventory filtered by location
Product Management
- Get Products: Retrieve product information by SKU or all products
- Product Details: Get detailed information about specific products
- Create Products: Add new products to the system
Order Management
- Get Orders: Retrieve orders with optional status filtering
- Order Details: Get detailed information about specific orders
- Create Orders: Create new orders with customer and item information
- Update Order Status: Change order status (pending, processing, shipped, delivered, cancelled)
Customer Management
- Get Customers: Retrieve customer information with optional email filtering
- Customer Details: Get detailed information about specific customers
- Create Customers: Add new customers to the system
Analytics
- Sales Summary: Get sales data for date ranges
- Inventory Summary: Get inventory statistics and summaries
Quick Start
Prerequisites
- Python 3.11+
- Skulabs API key
- Railway account (for deployment) or local development setup
Local Development
-
Clone and setup:
git clone <repository> cd skulabs-mcp pip install -r requirements.txt -
Configure environment:
cp env.example .env # Edit .env with your Skulabs API key -
Run the server:
python skulabs_mcp_server.py
Railway Deployment
-
Connect to Railway:
- Push your code to GitHub
- Connect Railway to your GitHub repository
- Railway will auto-detect Python and install dependencies
-
Set Environment Variables:
- Go to Railway dashboard → Variables
- Add
SKULABS_API_KEYwith your Skulabs API key - Optionally set
SKULABS_BASE_URL(defaults to https://api.skulabs.com)
-
Deploy:
- Railway will automatically deploy on git push
- Get your server URL from Railway dashboard
Configuration
Environment Variables
| Variable | Description | Default | Required |
|---|---|---|---|
SKULABS_API_KEY |
Your Skulabs API key | - | Yes |
SKULABS_BASE_URL |
Skulabs API base URL | https://api.skulabs.com | No |
MCP_SERVER_NAME |
Server name for MCP | skulabs-mcp | No |
MCP_SERVER_VERSION |
Server version | 1.0.0 | No |
LOG_LEVEL |
Logging level | INFO | No |
Getting Your Skulabs API Key
- Log into your Skulabs account
- Go to Settings → Advanced → API
- Generate a new API key
- Copy the key to your environment variables
Usage with AI Agents
Retell AI Integration
-
In Retell AI Dashboard:
- Go to your voice agent configuration
- Add MCP server connection
- Use your Railway URL as the MCP server endpoint
-
Voice Agent Prompts:
You have access to Skulabs inventory and order management tools. You can check inventory, create orders, update order status, and manage customers. Use the available tools to help customers with their requests.
Claude Desktop Integration
- Add to Claude Desktop config:
{ "mcpServers": { "skulabs": { "command": "python", "args": ["/path/to/skulabs_mcp_server.py"], "env": { "SKULABS_API_KEY": "your-api-key" } } } }
API Reference
Tool: get_inventory
Retrieve inventory items with optional filtering.
Parameters:
sku(string, optional): Specific SKU to retrievelocation(string, optional): Filter by locationlimit(integer, optional): Max items to return (default: 100)offset(integer, optional): Items to skip (default: 0)
Tool: update_inventory
Update inventory quantity for a specific SKU.
Parameters:
sku(string, required): SKU to updatequantity(integer, required): New quantitylocation(string, optional): Location to update
Tool: get_orders
Retrieve orders with optional status filtering.
Parameters:
status(string, optional): Filter by statuslimit(integer, optional): Max orders to return (default: 100)offset(integer, optional): Orders to skip (default: 0)
Tool: create_order
Create a new order.
Parameters:
customer_id(string, required): Customer IDitems(array, required): Order items with SKU, quantity, priceshipping_address(object, optional): Shipping addressnotes(string, optional): Order notes
[See full API documentation in the source code for all available tools]
Error Handling
The server includes comprehensive error handling:
- API Errors: Skulabs API errors are caught and returned with details
- Validation Errors: Input validation with clear error messages
- Network Errors: Timeout and connection error handling
- Logging: Structured logging for debugging and monitoring
Development
Project Structure
skulabs-mcp/
├── skulabs_mcp_server.py # Main MCP server
├── skulabs_client.py # Skulabs API client
├── requirements.txt # Python dependencies
├── railway.json # Railway deployment config
├── Procfile # Process configuration
├── runtime.txt # Python version
├── env.example # Environment template
└── README.md # This file
Adding New Tools
-
Add method to SkulabsClient:
async def new_method(self, param: str) -> Dict[str, Any]: return await self._make_request("GET", f"/endpoint/{param}") -
Add tool definition in list_tools():
Tool( name="new_tool", description="Description of the tool", inputSchema={...} ) -
Add handler in execute_tool():
elif name == "new_tool": return await client.new_method(arguments["param"])
Support
- Skulabs API Support: Email api-support@skulabs.com with "API Support" in subject
- MCP Protocol: Model Context Protocol Documentation
- Issues: Create GitHub issues for bugs or feature requests
License
MIT License - see LICENSE file for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。