Skulabs MCP Server

Skulabs MCP Server

Enables AI agents to interact with Skulabs inventory management system through comprehensive tools for managing products, orders, customers, and analytics. Supports voice agents like Retell AI and desktop applications like Claude for natural language inventory operations.

Category
访问服务器

README

Skulabs MCP Server

A Model Context Protocol (MCP) server that exposes Skulabs API functionality as tools for AI agents like Claude, Retell AI voice agents, and other MCP-compatible applications.

Features

Inventory Management

  • Get Inventory: Retrieve inventory items by SKU, location, or all items
  • Update Inventory: Update quantity for specific SKUs
  • Location-based Inventory: Get inventory filtered by location

Product Management

  • Get Products: Retrieve product information by SKU or all products
  • Product Details: Get detailed information about specific products
  • Create Products: Add new products to the system

Order Management

  • Get Orders: Retrieve orders with optional status filtering
  • Order Details: Get detailed information about specific orders
  • Create Orders: Create new orders with customer and item information
  • Update Order Status: Change order status (pending, processing, shipped, delivered, cancelled)

Customer Management

  • Get Customers: Retrieve customer information with optional email filtering
  • Customer Details: Get detailed information about specific customers
  • Create Customers: Add new customers to the system

Analytics

  • Sales Summary: Get sales data for date ranges
  • Inventory Summary: Get inventory statistics and summaries

Quick Start

Prerequisites

  • Python 3.11+
  • Skulabs API key
  • Railway account (for deployment) or local development setup

Local Development

  1. Clone and setup:

    git clone <repository>
    cd skulabs-mcp
    pip install -r requirements.txt
    
  2. Configure environment:

    cp env.example .env
    # Edit .env with your Skulabs API key
    
  3. Run the server:

    python skulabs_mcp_server.py
    

Railway Deployment

  1. Connect to Railway:

    • Push your code to GitHub
    • Connect Railway to your GitHub repository
    • Railway will auto-detect Python and install dependencies
  2. Set Environment Variables:

    • Go to Railway dashboard → Variables
    • Add SKULABS_API_KEY with your Skulabs API key
    • Optionally set SKULABS_BASE_URL (defaults to https://api.skulabs.com)
  3. Deploy:

    • Railway will automatically deploy on git push
    • Get your server URL from Railway dashboard

Configuration

Environment Variables

Variable Description Default Required
SKULABS_API_KEY Your Skulabs API key - Yes
SKULABS_BASE_URL Skulabs API base URL https://api.skulabs.com No
MCP_SERVER_NAME Server name for MCP skulabs-mcp No
MCP_SERVER_VERSION Server version 1.0.0 No
LOG_LEVEL Logging level INFO No

Getting Your Skulabs API Key

  1. Log into your Skulabs account
  2. Go to Settings → Advanced → API
  3. Generate a new API key
  4. Copy the key to your environment variables

Usage with AI Agents

Retell AI Integration

  1. In Retell AI Dashboard:

    • Go to your voice agent configuration
    • Add MCP server connection
    • Use your Railway URL as the MCP server endpoint
  2. Voice Agent Prompts:

    You have access to Skulabs inventory and order management tools. 
    You can check inventory, create orders, update order status, and manage customers.
    Use the available tools to help customers with their requests.
    

Claude Desktop Integration

  1. Add to Claude Desktop config:
    {
      "mcpServers": {
        "skulabs": {
          "command": "python",
          "args": ["/path/to/skulabs_mcp_server.py"],
          "env": {
            "SKULABS_API_KEY": "your-api-key"
          }
        }
      }
    }
    

API Reference

Tool: get_inventory

Retrieve inventory items with optional filtering.

Parameters:

  • sku (string, optional): Specific SKU to retrieve
  • location (string, optional): Filter by location
  • limit (integer, optional): Max items to return (default: 100)
  • offset (integer, optional): Items to skip (default: 0)

Tool: update_inventory

Update inventory quantity for a specific SKU.

Parameters:

  • sku (string, required): SKU to update
  • quantity (integer, required): New quantity
  • location (string, optional): Location to update

Tool: get_orders

Retrieve orders with optional status filtering.

Parameters:

  • status (string, optional): Filter by status
  • limit (integer, optional): Max orders to return (default: 100)
  • offset (integer, optional): Orders to skip (default: 0)

Tool: create_order

Create a new order.

Parameters:

  • customer_id (string, required): Customer ID
  • items (array, required): Order items with SKU, quantity, price
  • shipping_address (object, optional): Shipping address
  • notes (string, optional): Order notes

[See full API documentation in the source code for all available tools]

Error Handling

The server includes comprehensive error handling:

  • API Errors: Skulabs API errors are caught and returned with details
  • Validation Errors: Input validation with clear error messages
  • Network Errors: Timeout and connection error handling
  • Logging: Structured logging for debugging and monitoring

Development

Project Structure

skulabs-mcp/
├── skulabs_mcp_server.py    # Main MCP server
├── skulabs_client.py        # Skulabs API client
├── requirements.txt         # Python dependencies
├── railway.json            # Railway deployment config
├── Procfile                # Process configuration
├── runtime.txt             # Python version
├── env.example             # Environment template
└── README.md               # This file

Adding New Tools

  1. Add method to SkulabsClient:

    async def new_method(self, param: str) -> Dict[str, Any]:
        return await self._make_request("GET", f"/endpoint/{param}")
    
  2. Add tool definition in list_tools():

    Tool(
        name="new_tool",
        description="Description of the tool",
        inputSchema={...}
    )
    
  3. Add handler in execute_tool():

    elif name == "new_tool":
        return await client.new_method(arguments["param"])
    

Support

  • Skulabs API Support: Email api-support@skulabs.com with "API Support" in subject
  • MCP Protocol: Model Context Protocol Documentation
  • Issues: Create GitHub issues for bugs or feature requests

License

MIT License - see LICENSE file for details.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选