Skyforge MCP Server
Connects AI assistants to SkySpark and Haxall building automation systems by dynamically exposing SkySpark Axon functions as MCP tools. Enables natural language interaction with building data, equipment, and automation functions through real-time tool discovery.
README
Skyforge MCP Server
⚠️ ALPHA RELEASE - This is an early alpha version. Expect bugs and breaking changes.
🚫 NOT FOR PRODUCTION - This is a development/experimental version. For a production implementation, please contact james@skyforge-labs.com
🔓 NO AUTHENTICATION - This server has no built-in authentication. CORS is wide open (
allow_origins=["*"]). Use at your own risk and secure your deployment appropriately.
A Model Context Protocol (MCP) server that connects AI assistants to SkySpark and Haxall building automation systems. Dynamically exposes your SkySpark Axon functions as MCP tools.
Features
- Dynamic Axon Tools - Fetches tool definitions from SkySpark at runtime
- Prompt Support - Expose templated prompts from SkySpark
- Dual Transport - Supports stdio (Claude Desktop) and HTTP/SSE (web clients)
- Type Safety - Full Haystack type system with automatic JSON Schema conversion
- Docker Ready - Simple Docker deployment included
How It Works
The server fetches tools from SkySpark on each list_tools request. This means:
- Add new tools by creating Axon functions in SkySpark
- No server restart needed for schema changes
- SkySpark is your single source of truth
Quick Start
Prerequisites
- SkySpark or Haxall server with API access
- Docker (recommended) OR Python 3.12+ with uv
Quick Setup with Example Tools
For immediate testing, import the included setup.zinc file into your SkySpark project. This provides example MCP tools and the required fetchMcpTools() function.
Docker Setup (Easiest)
-
Clone and configure
git clone https://github.com/yourusername/skyforge-mcp.git cd skyforge-mcp # Create .env file cat > .env << EOF SKYSPARK_URI=http://host.docker.internal:8080/api/demo SKYSPARK_USERNAME=your_username SKYSPARK_PASSWORD=your_password EOF -
Start server
docker-compose up --buildServer runs on
http://localhost:8000/mcp -
Test with MCP Inspector
npx @modelcontextprotocol/inspector docker exec -it skyspark-mcp-server uv run main.py
Local Setup (Development)
- Install and run
# Install uv package manager curl -LsSf https://astral.sh/uv/install.sh | sh # Clone and setup git clone https://github.com/yourusername/skyforge-mcp.git cd skyforge-mcp uv sync # Create .env (same as above) # Run stdio mode (for Claude Desktop) uv run main.py # OR run HTTP/SSE mode (for web clients) uv run uvicorn main:app --host 0.0.0.0 --port 8000
Claude Desktop Integration
Edit ~/Library/Application Support/Claude/claude_desktop_config.json (macOS):
Docker:
{
"mcpServers": {
"skyforge": {
"command": "docker",
"args": ["exec", "-i", "skyspark-mcp-server", "uv", "run", "main.py"]
}
}
}
Local:
{
"mcpServers": {
"skyforge": {
"command": "uv",
"args": ["run", "main.py"],
"cwd": "/path/to/skyforge-mcp",
"env": {
"SKYSPARK_URI": "http://localhost:8080/api/demo",
"SKYSPARK_USERNAME": "your_username",
"SKYSPARK_PASSWORD": "your_password"
}
}
}
}
Restart Claude Desktop after saving.
Creating SkySpark Tools
In SkySpark, implement fetchMcpTools() to return tool definitions as a grid. Each row should have:
name- Tool identifier (Str)dis- Display name (Str)help- Description (Str)params- Parameter schema (Dict or List)
Example in SkySpark:
// Return MCP tools grid
fetchMcpTools: () => [
{
name: "getSiteEquips",
dis: "Get Site Equipment",
help: "Returns all equipment for a site",
params: {
kind: "Dict",
params: {
siteId: {
kind: "Ref",
help: "Site reference ID",
required: marker()
}
}
}
}
].toGrid
// Tool implementation (called via `call()`)
getSiteEquips: (dict) => readAll(equip and siteRef == dict->siteId)
Import the included setup.zinc file into your SkySpark project for example tools and the required fetchMcpTools() function.
The server fetches tools automatically when clients call list_tools.
Configuration
Create .env file:
# For Docker: use host.docker.internal to access host machine
SKYSPARK_URI=http://host.docker.internal:8080/api/demo
# For local development: use localhost
# SKYSPARK_URI=http://localhost:8080/api/demo
SKYSPARK_USERNAME=your_username
SKYSPARK_PASSWORD=your_password
All three variables are required.
Project Structure
skyforge-mcp/
├── app/
│ ├── skyspark/ # SkySpark integration
│ │ ├── client.py # Phable-based API client
│ │ ├── converters.py # Haystack ↔ JSON Schema conversion
│ │ ├── grid.py # HGrid wrapper for dual format output
│ │ └── types.py # Extended Haystack types
│ └── tools/
│ └── axon_tools.py # Hardcoded tool examples
├── main.py # MCP server entry point
├── docker-compose.yml # Docker setup
└── Dockerfile # Container definition
Troubleshooting
Connection errors:
- Docker: Use
host.docker.internalinstead oflocalhostin SKYSPARK_URI - Verify SkySpark URI is accessible:
curl http://your-server:8080/api/demo - Check
.envcredentials - Ensure SkySpark API is enabled
No tools appearing:
- Verify
fetchMcpTools()function exists in SkySpark - Check server logs:
docker-compose logsoruv run main.py - Test with MCP Inspector
Docker issues:
docker-compose logs # View logs
docker-compose restart # Restart
docker-compose up --build # Rebuild
Security Notes
⚠️ Important:
- This is NOT for production use - if you are interested in a production implementation, contact james@skyforge-labs.com
- No built-in authentication - secure your network/deployment
- CORS allows all origins - intended for local development
- Store credentials securely (
.envfiles, environment variables) - For production, add authentication middleware or use VPN/firewall
Credits & License
Built with:
- MCP Python SDK - Model Context Protocol implementation
- Phable - Haystack/SkySpark client library by Rick Jennings
- Project Haystack - Building automation data standard
License: MIT - see LICENSE file
Contributing
Issues and PRs welcome! This is an alpha release - feedback appreciated.
Repository: GitHub
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。