Slack MCP Server
Enables AI assistants to interact with Slack workspaces through natural language, supporting channel management, message operations, user profiles, reactions, and threaded conversations.
README
Slack MCP Server
A Model Context Protocol (MCP) server that provides seamless integration with Slack's API. This server enables AI assistants like Claude to interact with Slack workspaces, manage channels, send messages, and perform various Slack operations.
Features
- Channel Management: List public channels and get channel information
- Message Operations: Post messages, reply to threads, and get message history
- User Management: List users and get detailed user profiles
- Reactions: Add emoji reactions to messages
- Thread Support: Get thread replies and post threaded responses
- Pagination: Support for paginated results across all list operations
- Authentication: Secure OAuth-based authentication via Nango
Prerequisites
- Python 3.13+
- Slack Bot Token with appropriate permissions
- Slack Team ID
- Nango integration for credential management (optional)
Installation
- Clone the repository (or create the project structure):
mkdir slack-mcp-server
cd slack-mcp-server
- Create a virtual environment:
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
- Install dependencies:
pip install -e .
Configuration
Environment Variables
Create a .env file in the project root with the following variables:
NANGO_BASE_URL=https://api.nango.dev
NANGO_SECRET_KEY=your-nango-secret-key
NANGO_CONNECTION_ID=your-connection-id
NANGO_INTEGRATION_ID=slack
Slack App Setup
- Create a Slack App at api.slack.com
- Add Bot Token Scopes:
channels:read- View basic information about public channelschannels:history- View messages in public channelschat:write- Send messages as the botreactions:write- Add emoji reactionsusers:read- View people in the workspaceusers:read.email- View email addresses (if needed)
- Install the app to your workspace
- Copy the Bot User OAuth Token to your
.envfile
Claude Desktop Configuration
Add this configuration to your Claude Desktop config file:
Location:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"slack": {
"command": "uvx",
"args": ["git+https://github.com/ampcome-mcps/slack-mcp.git"],
"env": {
"NANGO_BASE_URL": "NANGO BASE URL",
"NANGO_SECRET_KEY":"ENTER YOUR NANAGO SECRET KEY",
"NANGO_CONNECTION_ID":"ENTER NANGO CONNECTION ID",
"NANGO_INTEGRATION_ID":"ENTER NANGO INTEGRATION ID"
}
}
}
}
Available Tools
The MCP server provides the following tools for Claude:
Channel Operations
slack_list_channels- List public channels with paginationget_conversation_info- Get detailed information about a specific channel
Message Operations
slack_post_message- Post a new message to a channelslack_reply_to_thread- Reply to a specific message threadslack_get_channel_history- Get recent messages from a channelslack_get_thread_replies- Get all replies in a message thread
User Operations
slack_get_users- List all users in the workspaceslack_get_user_profile- Get detailed profile information for a user
Interaction Operations
slack_add_reaction- Add emoji reactions to messages
Usage Examples
Once configured with Claude, you can use natural language commands like:
- "List all the channels in our Slack workspace"
- "Post a message to the #general channel saying 'Hello team!'"
- "Get the recent messages from the #development channel"
- "Reply to that thread with 'Thanks for the update'"
- "Add a thumbs up reaction to that message"
- "Show me the user profile for John Doe"
Running the Server Standalone
For testing or development purposes, you can run the server directly:
python main.py
The server will start and listen for MCP protocol messages via stdin/stdout.
Project Structure
slack-mcp-server/
├── main.py # Main MCP server implementation
├── pyproject.toml # Project configuration and dependencies
├── .env # Environment variables (create from template)
├── .env.example # Environment variables template
├── README.md # This file
└── .gitignore # Git ignore rules
Development
Key Components
- SlackClient: Handles all Slack API interactions using httpx
- MCP Server: Implements the Model Context Protocol for tool exposure
- Tool Definitions: Structured schemas for all available Slack operations
- Error Handling: Comprehensive error handling and logging
Adding New Tools
To add new Slack API functionality:
- Add the method to the
SlackClientclass - Define the tool schema in the
TOOLSlist - Add the tool handler in the
call_toolfunction
Dependencies
httpx- Async HTTP client for Slack API callsmcp- Model Context Protocol frameworkpython-dotenv- Environment variable management
Troubleshooting
Common Issues
- Authentication Errors: Verify your
SLACK_BOT_TOKENis correct and has necessary scopes - Channel Not Found: Ensure the bot has access to the channel and it's not archived
- Permission Denied: Check that your Slack app has the required OAuth scopes
- Rate Limiting: The server handles Slack's rate limits automatically
Debugging
The server logs debug information to stderr. Check the Claude Desktop logs or run the server directly to see detailed error messages.
Security Notes
- Store sensitive tokens in environment variables, never in code
- Use
.gitignoreto prevent committing.envfiles - Regularly rotate your Slack bot tokens
- Follow the principle of least privilege for OAuth scopes
Contributing
Contributions are welcome! Please:
- Fork the repository
- Create a feature branch
- Add tests for new functionality
- Submit a pull request
License
MIT License - see LICENSE file for details.
Support
For issues related to:
- Slack API: Check the Slack API documentation
- MCP Protocol: See the MCP specification
- This server: Open an issue in the project repository
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。