
Slack MCP Server
Enables AI assistants to interact with Slack workspaces through the Model Context Protocol, providing tools for reading/sending messages, managing channels, and accessing Slack API functionality.
README
Slack MCP Server
A Model Context Protocol (MCP) server that enables AI assistants to interact with Slack workspaces. This server provides tools for reading messages, posting messages, managing channels, and more through the Slack API.
Features
- Channel Management: List channels, get channel info, create channels
- Message Operations: Send messages, read message history, reply to threads
- User Management: Get user information, list workspace members
- File Operations: Upload files, share files in channels
- Search: Search messages and files across the workspace
- Reactions: Add and remove emoji reactions to messages
Prerequisites
- Python 3.8 or higher
- A Slack workspace with admin permissions
- Slack Bot Token with appropriate scopes
Installation
- Clone this repository:
git clone <repository-url>
cd slack-mcp-server
- Install dependencies:
pip install -r requirements.txt
- Set up your Slack Bot Token (see Configuration section below)
Configuration
Setting up Slack Bot Token
-
Go to Slack API and create a new app
-
Navigate to "OAuth & Permissions" in the sidebar
-
Add the following Bot Token Scopes:
channels:read
- View basic information about public channelschannels:write
- Manage public channelschat:write
- Send messages as the botchat:write.public
- Send messages to channels the bot isn't a member offiles:read
- View files shared in channels and conversationsfiles:write
- Upload, edit, and delete filesgroups:read
- View basic information about private channelsim:read
- View basic information about direct messagesmpim:read
- View basic information about group direct messagesreactions:read
- View emoji reactions and their associated contentreactions:write
- Add and edit emoji reactionssearch:read
- Search messages and filesusers:read
- View people in the workspacechannels:history
- View messages and other content in public channelsgroups:history
- View messages and other content in private channelsim:history
- View messages and other content in direct messagesmpim:history
- View messages and other content in group direct messages
-
Install the app to your workspace
-
Copy the "Bot User OAuth Token" (starts with
xoxb-
)
Environment Variables
Set your Slack Bot Token as an environment variable:
export SLACK_BOT_TOKEN="xoxb-your-bot-token-here"
Or create a .env
file in the project root:
SLACK_BOT_TOKEN=xoxb-your-bot-token-here
Usage
Running the Server
python slack_mcp_server.py
The server will start and listen for MCP connections via stdio.
Using with Claude Desktop
Add the following configuration to your Claude Desktop config file:
{
"mcpServers": {
"slack": {
"command": "python",
"args": ["/path/to/slack_mcp_server.py"],
"env": {
"SLACK_BOT_TOKEN": "xoxb-your-bot-token-here"
}
}
}
}
Available Tools
The server provides the following tools:
Channel Operations
list_channels()
- List all channels in the workspaceget_channel_info(channel_id)
- Get detailed information about a channelcreate_channel(name, is_private=False)
- Create a new channel
Message Operations
send_message(channel, text, thread_ts=None)
- Send a message to a channelget_channel_history(channel, limit=10)
- Get recent messages from a channelsearch_messages(query, count=20)
- Search for messages across the workspace
User Operations
get_user_info(user_id)
- Get information about a userlist_users()
- List all users in the workspace
File Operations
upload_file(channels, content, filename, title=None)
- Upload a file to channelssearch_files(query, count=20)
- Search for files in the workspace
Reaction Operations
add_reaction(channel, timestamp, name)
- Add an emoji reaction to a messageremove_reaction(channel, timestamp, name)
- Remove an emoji reaction from a message
Examples
Sending a Message
# Through Claude Desktop or other MCP client
"Send a message to #general saying 'Hello from the MCP server!'"
Getting Channel History
# Get the last 5 messages from a channel
"Get the last 5 messages from the #development channel"
Searching Messages
# Search for messages containing specific keywords
"Search for messages containing 'deployment' in the last week"
Creating a Channel
# Create a new public channel
"Create a new channel called 'mcp-testing' for testing the MCP integration"
Error Handling
The server includes comprehensive error handling for:
- Invalid Slack tokens
- Rate limiting
- Network connectivity issues
- Invalid channel/user IDs
- Permission errors
Security Considerations
- Store your Slack Bot Token securely and never commit it to version control
- Use environment variables or secure secret management
- Regularly rotate your bot tokens
- Monitor bot activity in your Slack workspace
- Grant only the minimum required permissions
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
License
This project is licensed under the MIT License - see the LICENSE file for details.
Support
For issues and questions:
- Check the Slack API documentation
- Review the MCP specification
- Open an issue in this repository
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。