Slate MCP Server
Connects Technolutions Slate with Claude to query and analyze student enrollment demographics, diversity metrics, and enrollment funnel data through natural language.
README
Slate MCP Server
An MCP (Model Context Protocol) server that connects Technolutions Slate with Claude, enabling you to query and analyze student enrollment demographics data through natural language.
Features
- Enrollment Demographics: Get comprehensive demographic summaries for incoming classes
- Diversity Metrics: Calculate diversity indices, URM percentages, and geographic diversity
- Enrollment Funnel: Track conversion rates from prospect to enrolled
- Year-over-Year Comparisons: Analyze trends across multiple enrollment years
- Flexible Queries: Search and filter students by various criteria
Prerequisites
- Node.js 18.0.0 or higher
- Access to a Technolutions Slate instance with API credentials
- Slate queries configured for enrollment data (see Slate Configuration)
Installation
# Clone the repository
git clone https://github.com/your-org/slate-mcp-server.git
cd slate-mcp-server
# Install dependencies
npm install
# Build the project
npm run build
Configuration
Environment Variables
Copy .env.example to .env and configure your Slate credentials:
cp .env.example .env
Required environment variables:
| Variable | Description |
|---|---|
SLATE_BASE_URL |
Your Slate instance URL (e.g., https://yourschool.technolutions.net) |
SLATE_USERNAME |
Slate API username |
SLATE_PASSWORD |
Slate API password |
SLATE_API_KEY |
(Optional) API key if your instance uses key-based auth |
Claude Desktop Configuration
Add the server to your Claude Desktop configuration file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"slate": {
"command": "node",
"args": ["/path/to/slate-mcp-server/dist/index.js"],
"env": {
"SLATE_BASE_URL": "https://yourschool.technolutions.net",
"SLATE_USERNAME": "your_username",
"SLATE_PASSWORD": "your_password"
}
}
}
}
Slate Configuration
This MCP server expects certain queries to be configured in your Slate instance. Work with your Slate administrator to create these queries:
Required Queries
-
enrollment_demographics: Returns enrolled student data with demographics- Required fields:
id,first_name,last_name,email,gender,ethnicity,race,citizenship,first_generation,state,country,intended_major,entry_year,entry_term,enrollment_status
- Required fields:
-
enrollment_funnel: Returns funnel counts- Required fields:
prospects,inquiries,applicants,admitted,deposited,enrolled
- Required fields:
-
students_by_status: Returns students filtered by application status- Required fields: Same as
enrollment_demographics
- Required fields: Same as
Query Parameters
The server will pass these parameters to your queries:
entry_year: The enrollment year (e.g., 2024)entry_term: The enrollment term (e.g., "Fall")application_status: For status-based queries
Available Tools
get_enrollment_demographics
Get a comprehensive demographics summary for enrolled students.
Parameters:
entry_year(required): The entry year (e.g., 2024)entry_term(optional): The entry term (default: "Fall")
Example prompt: "Show me the demographics for Fall 2024 incoming class"
get_diversity_metrics
Get detailed diversity metrics including diversity index and URM percentages.
Parameters:
entry_year(required): The entry yearentry_term(optional): The entry term
Example prompt: "What are the diversity metrics for our 2024 freshman class?"
get_enrollment_funnel
Get enrollment funnel data with conversion rates.
Parameters:
entry_year(required): The entry yearentry_term(optional): The entry term
Example prompt: "Show me the enrollment funnel and yield rates for Fall 2024"
compare_enrollment_years
Compare demographics across multiple years.
Parameters:
years(required): Array of years to compare (e.g., [2022, 2023, 2024])entry_term(optional): The entry term
Example prompt: "Compare enrollment demographics from 2022 to 2024"
get_demographics_report
Generate a formatted, readable demographics report.
Parameters:
entry_year(required): The entry yearentry_term(optional): The entry term
Example prompt: "Generate a demographics report for Fall 2024"
get_demographics_by_category
Get enrollment breakdown by a specific category.
Parameters:
entry_year(required): The entry yearcategory(required): One of:gender,ethnicity,state,country,admit_type,major,college,first_generation,internationalentry_term(optional): The entry term
Example prompt: "Show me enrollment by state for Fall 2024"
search_students
Search for students matching specific criteria.
Parameters:
entry_year(optional): Filter by entry yearentry_term(optional): Filter by entry termstate(optional): Filter by home statecountry(optional): Filter by home countrymajor(optional): Filter by intended majorfirst_generation(optional): Filter by first-gen statusinternational(optional): Filter by international statuslimit(optional): Max results (default: 100)
Example prompt: "Find all first-generation students from California in Fall 2024"
Example Conversations
Getting Annual Demographics Report
User: What does our incoming Fall 2024 class look like demographically?
Claude: I'll pull the enrollment demographics for Fall 2024...
[Uses get_enrollment_demographics tool]
Here's a summary of your Fall 2024 incoming class:
- Total Enrolled: 2,450 students
- Gender: 54% Female, 45% Male, 1% Non-binary
- First Generation: 28% (686 students)
- International: 12% (294 students)
...
Year-over-Year Analysis
User: How has our diversity changed over the past 3 years?
Claude: I'll compare the demographics across 2022, 2023, and 2024...
[Uses compare_enrollment_years tool]
Here's the year-over-year comparison:
- First Generation: 24% → 26% → 28% (+4 points)
- International: 10% → 11% → 12% (+2 points)
- URM: 22% → 24% → 26% (+4 points)
...
Development
# Run in development mode
npm run dev
# Type check
npm run typecheck
# Lint
npm run lint
# Build
npm run build
Security Considerations
- Never commit
.envfiles containing credentials - Use read-only API credentials when possible
- The server anonymizes personally identifiable information in search results
- Consider implementing rate limiting for production use
License
MIT
Support
For issues with this MCP server, please open a GitHub issue.
For Slate-specific questions, contact Technolutions Support.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。