Sleeper API MCP
This Model Context Protocol server provides access to the Sleeper Fantasy Football API, enabling agents to fetch data about users, leagues, drafts, rosters, matchups, and player information without requiring an API key.
README
Sleeper API MCP
This Model Context Protocol (MCP) server provides access to the Sleeper Fantasy Football API. It enables agents to fetch data about users, leagues, drafts, rosters, matchups, and player information from the Sleeper platform.
Features
- Access user information and leagues
- Retrieve league details, rosters, and users
- Get matchup information and playoff brackets
- View transactions and traded picks
- Access draft information and picks
- Fetch player data and trending player information
- No API key required (Sleeper API is read-only)
Setup
Requirements
pip install requests
Usage
- Place this MCP in a directory named
mcp_sleeper - Configure Cursor with the following
.cursor/mcp.jsonsnippet:
{
"mcpServers": {
"sleeper": {
"command": "python server.py"
}
}
}
- Start the MCP with:
cursor run-mcp sleeper
API Methods
The MCP provides the following tools:
User Data
getUserInfo: Fetch user information by username or user_idgetUserLeagues: Fetch all leagues for a user for a specified sport and seasongetUserDrafts: Fetch all drafts for a user for a specific sport and season
League Data
getLeagueInfo: Fetch information about a specific leaguegetLeagueRosters: Fetch all rosters in a leaguegetLeagueUsers: Fetch all users in a leaguegetLeagueMatchups: Fetch matchups in a league for a specific weekgetLeagueWinnersBracket: Fetch the playoff winners bracket for a leaguegetLeagueLosersBracket: Fetch the playoff losers bracket for a leaguegetLeagueTransactions: Fetch transactions in a league for a specific weekgetLeagueTradedPicks: Fetch all traded picks in a leaguegetLeagueDrafts: Fetch all drafts for a league
Draft Data
getDraftInfo: Fetch information about a specific draftgetDraftPicks: Fetch all picks in a draftgetDraftTradedPicks: Fetch all traded picks in a draft
Player Data
getAllPlayers: Fetch information about all players for a specific sportgetTrendingPlayers: Fetch trending players based on add/drop activity
State Data
getNFLState: Fetch the current NFL state
Example Usage
Here's how an agent might use this MCP to retrieve data from Sleeper:
# Get user information
user_info = getUserInfo({"username_or_user_id": "sleeper_username"})
# Get user's leagues for the 2023 NFL season
leagues = getUserLeagues({"user_id": user_info["user_id"], "sport": "nfl", "season": "2023"})
# Get information about a specific league
league_info = getLeagueInfo({"league_id": leagues[0]["league_id"]})
# Get rosters for a league
rosters = getLeagueRosters({"league_id": league_info["league_id"]})
# Get matchups for a specific week
matchups = getLeagueMatchups({"league_id": league_info["league_id"], "week": 1})
# Get trending players
trending_players = getTrendingPlayers({"sport": "nfl", "type": "add", "lookback_hours": 24, "limit": 10})
Rate Limiting
Please be mindful of the rate at which you make API calls. According to Sleeper's documentation, you should stay under 1000 API calls per minute to avoid being IP-blocked.
Further Reading
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。