SlimContext MCP Server

SlimContext MCP Server

Provides AI chat history compression tools through token-based trimming and AI-powered summarization strategies to manage conversation context within token limits.

Category
访问服务器

README

SlimContext MCP Server

A Model Context Protocol (MCP) server that wraps the SlimContext library, providing AI chat history compression tools for MCP-compatible clients.

Overview

SlimContext MCP Server exposes two powerful compression strategies as MCP tools:

  1. trim_messages - Token-based compression that removes oldest messages when exceeding token thresholds
  2. summarize_messages - AI-powered compression using OpenAI to create concise summaries

Installation

npm install -g slimcontext-mcp-server
# or
pnpm add -g slimcontext-mcp-server

Development

# Clone and setup
git clone <repository>
cd slimcontext-mcp-server
pnpm install

# Build
pnpm build

# Run in development
pnpm dev

# Type checking
pnpm typecheck

Configuration

MCP Client Setup

Add to your MCP client configuration:

{
  "mcpServers": {
    "slimcontext": {
      "command": "npx",
      "args": ["-y", "slimcontext-mcp-server"]
    }
  }
}

Environment Variables

  • OPENAI_API_KEY: OpenAI API key for summarization (optional, can be passed as tool parameter)

Tools

trim_messages

Compresses chat history using token-based trimming strategy.

Parameters:

  • messages (required): Array of chat messages
  • maxModelTokens (optional): Maximum model token context window (default: 8192)
  • thresholdPercent (optional): Percentage threshold to trigger compression 0-1 (default: 0.7)
  • minRecentMessages (optional): Minimum recent messages to preserve (default: 2)

Example:

{
  "messages": [
    { "role": "system", "content": "You are a helpful assistant." },
    { "role": "user", "content": "Hello!" },
    { "role": "assistant", "content": "Hi there! How can I help you today?" },
    { "role": "user", "content": "Tell me about AI." }
  ],
  "maxModelTokens": 4000,
  "thresholdPercent": 0.8,
  "minRecentMessages": 2
}

Response:

{
  "success": true,
  "original_message_count": 4,
  "compressed_message_count": 3,
  "messages_removed": 1,
  "compression_ratio": 0.75,
  "compressed_messages": [
    { "role": "system", "content": "You are a helpful assistant." },
    { "role": "assistant", "content": "Hi there! How can I help you today?" },
    { "role": "user", "content": "Tell me about AI." }
  ]
}

summarize_messages

Compresses chat history using AI-powered summarization strategy.

Parameters:

  • messages (required): Array of chat messages
  • maxModelTokens (optional): Maximum model token context window (default: 8192)
  • thresholdPercent (optional): Percentage threshold to trigger compression 0-1 (default: 0.7)
  • minRecentMessages (optional): Minimum recent messages to preserve (default: 4)
  • openaiApiKey (optional): OpenAI API key (can also use OPENAI_API_KEY env var)
  • openaiModel (optional): OpenAI model for summarization (default: 'gpt-4o-mini')
  • customPrompt (optional): Custom summarization prompt

Example:

{
  "messages": [
    { "role": "system", "content": "You are a helpful assistant." },
    { "role": "user", "content": "I want to build a web scraper." },
    {
      "role": "assistant",
      "content": "I can help you build a web scraper! What programming language would you prefer?"
    },
    { "role": "user", "content": "Python please." },
    {
      "role": "assistant",
      "content": "Great choice! For Python web scraping, I recommend using requests and BeautifulSoup..."
    },
    { "role": "user", "content": "Can you show me a simple example?" }
  ],
  "maxModelTokens": 4000,
  "thresholdPercent": 0.6,
  "minRecentMessages": 2,
  "openaiModel": "gpt-4o-mini"
}

Response:

{
  "success": true,
  "original_message_count": 6,
  "compressed_message_count": 4,
  "messages_removed": 2,
  "summary_generated": true,
  "compression_ratio": 0.67,
  "compressed_messages": [
    { "role": "system", "content": "You are a helpful assistant." },
    {
      "role": "system",
      "content": "The user expressed interest in building a web scraper and requested help with Python. The assistant recommended using requests and BeautifulSoup libraries for Python web scraping."
    },
    {
      "role": "assistant",
      "content": "Great choice! For Python web scraping, I recommend using requests and BeautifulSoup..."
    },
    { "role": "user", "content": "Can you show me a simple example?" }
  ]
}

Message Format

Both tools expect messages in SlimContext format:

interface SlimContextMessage {
  role: 'system' | 'user' | 'assistant' | 'tool' | 'human';
  content: string;
}

Error Handling

All tools return structured error responses:

{
  "success": false,
  "error": "Error message description",
  "error_type": "SlimContextError" | "OpenAIError" | "UnknownError"
}

Common error scenarios:

  • Missing OpenAI API key for summarization
  • Invalid message format
  • OpenAI API rate limits or errors
  • Invalid parameter values

Token Estimation

SlimContext uses a simple heuristic for token estimation: Math.ceil(content.length / 4) + 2. This provides a reasonable approximation for most use cases. For more accurate token counting, you would need to implement a custom token estimator in your client application.

Compression Strategies

Trimming Strategy

  • Preserves all system messages
  • Preserves the most recent N messages
  • Removes oldest non-system messages until under token threshold
  • Fast and deterministic
  • No external API dependencies

Summarization Strategy

  • Preserves all system messages
  • Preserves the most recent N messages
  • Summarizes middle portion of conversation using AI
  • Creates contextually rich summaries
  • Requires OpenAI API access

License

MIT

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests for new functionality
  5. Submit a pull request

Related

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选