Smart Coding MCP

Smart Coding MCP

Provides intelligent semantic code search using local AI embeddings, enabling natural language queries to find relevant code by meaning rather than exact keywords. Indexes codebases in the background with smart project detection and privacy-first local processing.

Category
访问服务器

README

Smart Coding MCP

npm version npm downloads License: MIT Node.js

An extensible Model Context Protocol (MCP) server that provides intelligent semantic code search for AI assistants. Built with local AI models using Matryoshka Representation Learning (MRL) for flexible embedding dimensions (64-768d).

What This Does

AI coding assistants work better when they can find relevant code quickly. Traditional keyword search falls short - if you ask "where do we handle authentication?" but your code uses "login" and "session", keyword search misses it.

This MCP server solves that by indexing your codebase with AI embeddings. Your AI assistant can search by meaning instead of exact keywords, finding relevant code even when the terminology differs.

Example

Available Tools

🔍 a_semantic_search - Find Code by Meaning

The primary tool for codebase exploration. Uses AI embeddings to understand what you're looking for, not just match keywords.

How it works: Converts your natural language query into a vector, then finds code chunks with similar meaning using cosine similarity + exact match boosting.

Best for:

  • Exploring unfamiliar codebases: "How does authentication work?"
  • Finding related code: "Where do we validate user input?"
  • Conceptual searches: "error handling patterns"
  • Works even with typos: "embeding modle initializashun" still finds embedding code

Example queries:

"Where do we handle cache persistence?"
"How is the database connection managed?"
"Find all API endpoint definitions"

📦 d_check_last_version - Package Version Lookup

Fetches the latest version of any package from its official registry. Supports 20+ ecosystems.

How it works: Queries official package registries (npm, PyPI, Crates.io, etc.) in real-time. No guessing, no stale training data.

Supported ecosystems: npm, PyPI, Crates.io, Maven, Go, RubyGems, NuGet, Packagist, Hex, pub.dev, Homebrew, Conda, and more.

Best for:

  • Before adding dependencies: "express"4.18.2
  • Checking for updates: "pip:requests"2.31.0
  • Multi-ecosystem projects: "npm:react", "go:github.com/gin-gonic/gin"

Example usage:

"What's the latest version of lodash?"
"Check if there's a newer version of axios"

🔄 b_index_codebase - Manual Reindexing

Triggers a full reindex of your codebase. Normally not needed since indexing is automatic and incremental.

How it works: Scans all files, generates new embeddings, and updates the SQLite cache. Uses progressive indexing so you can search while it runs.

When to use:

  • After major refactoring or branch switches
  • After pulling large changes from remote
  • If search results seem stale or incomplete
  • After changing embedding configuration (dimension, model)

🗑️ c_clear_cache - Reset Everything

Deletes the embeddings cache entirely, forcing a complete reindex on next search.

How it works: Removes the .smart-coding-cache/ directory. Next search or index operation starts fresh.

When to use:

  • Cache corruption (rare, but possible)
  • Switching embedding models or dimensions
  • Starting fresh after major codebase restructure
  • Troubleshooting search issues

📂 e_set_workspace - Switch Projects

Changes the workspace path at runtime without restarting the server.

How it works: Updates the internal workspace reference, creates cache folder for new path, and optionally triggers reindexing.

When to use:

  • Working on multiple projects in one session
  • Monorepo navigation between packages
  • Switching between related repositories

ℹ️ f_get_status - Server Health Check

Returns comprehensive status information about the MCP server.

What it shows:

  • Server version and uptime
  • Workspace path and cache location
  • Indexing status (ready, indexing, percentage complete)
  • Files indexed and chunk count
  • Model configuration (name, dimension, device)
  • Cache size and type

When to use:

  • Start of session to verify everything is working
  • Debugging connection or indexing issues
  • Checking indexing progress on large codebases

Installation

npm install -g smart-coding-mcp

To update:

npm update -g smart-coding-mcp

IDE Integration

Detailed setup instructions for your preferred environment:

IDE / App Setup Guide ${workspaceFolder} Support
VS Code View Guide ✅ Yes
Cursor View Guide ✅ Yes
Windsurf View Guide ❌ Absolute paths only
Claude Desktop View Guide ❌ Absolute paths only
OpenCode View Guide ❌ Absolute paths only
Raycast View Guide ❌ Absolute paths only
Antigravity View Guide ❌ Absolute paths only

Quick Setup

Add to your MCP config file:

{
  "mcpServers": {
    "smart-coding-mcp": {
      "command": "smart-coding-mcp",
      "args": ["--workspace", "/absolute/path/to/your/project"]
    }
  }
}

Config File Locations

IDE OS Path
Claude Desktop macOS ~/Library/Application Support/Claude/claude_desktop_config.json
Claude Desktop Windows %APPDATA%\Claude\claude_desktop_config.json
OpenCode Global ~/.config/opencode/opencode.json
OpenCode Project opencode.json in project root
Windsurf macOS ~/.codeium/windsurf/mcp_config.json
Windsurf Windows %USERPROFILE%\.codeium\windsurf\mcp_config.json

Multi-Project Setup

{
  "mcpServers": {
    "smart-coding-frontend": {
      "command": "smart-coding-mcp",
      "args": ["--workspace", "/path/to/frontend"]
    },
    "smart-coding-backend": {
      "command": "smart-coding-mcp",
      "args": ["--workspace", "/path/to/backend"]
    }
  }
}

Environment Variables

Customize behavior via environment variables:

Variable Default Description
SMART_CODING_VERBOSE false Enable detailed logging
SMART_CODING_MAX_RESULTS 5 Max search results returned
SMART_CODING_BATCH_SIZE 100 Files to process in parallel
SMART_CODING_MAX_FILE_SIZE 1048576 Max file size in bytes (1MB)
SMART_CODING_CHUNK_SIZE 25 Lines of code per chunk
SMART_CODING_EMBEDDING_DIMENSION 128 MRL dimension (64, 128, 256, 512, 768)
SMART_CODING_EMBEDDING_MODEL nomic-ai/nomic-embed-text-v1.5 AI embedding model
SMART_CODING_DEVICE cpu Inference device (cpu, webgpu, auto)
SMART_CODING_SEMANTIC_WEIGHT 0.7 Weight for semantic vs exact matching
SMART_CODING_EXACT_MATCH_BOOST 1.5 Boost multiplier for exact text matches
SMART_CODING_MAX_CPU_PERCENT 50 Max CPU usage during indexing (10-100%)
SMART_CODING_CHUNKING_MODE smart Code chunking (smart, ast, line)
SMART_CODING_WATCH_FILES false Auto-reindex on file changes
SMART_CODING_AUTO_INDEX_DELAY 5000 Delay before background indexing (ms), false to disable

Example with env vars:

{
  "mcpServers": {
    "smart-coding-mcp": {
      "command": "smart-coding-mcp",
      "args": ["--workspace", "/path/to/project"],
      "env": {
        "SMART_CODING_VERBOSE": "true",
        "SMART_CODING_MAX_RESULTS": "10",
        "SMART_CODING_EMBEDDING_DIMENSION": "256"
      }
    }
  }
}

Performance

Progressive Indexing - Search works immediately while indexing continues in the background. No waiting for large codebases.

Resource Throttling - CPU limited to 50% by default. Your machine stays responsive during indexing.

SQLite Cache - 5-10x faster than JSON. Automatic migration from older JSON caches.

Incremental Updates - Only changed files are re-indexed. Saves every 5 batches, so no data loss if interrupted.

Optimized Defaults - 128d embeddings (2x faster than 256d with minimal quality loss), smart batch sizing, parallel processing.

How It Works

flowchart TB
    subgraph IDE["IDE / AI Assistant"]
        Agent["AI Agent<br/>(Claude, GPT, Gemini)"]
    end

    subgraph MCP["Smart Coding MCP Server"]
        direction TB
        Protocol["Model Context Protocol<br/>JSON-RPC over stdio"]
        Tools["MCP Tools<br/>semantic_search | index_codebase | set_workspace | get_status"]

        subgraph Indexing["Indexing Pipeline"]
            Discovery["File Discovery<br/>glob patterns + smart ignore"]
            Chunking["Code Chunking<br/>Smart (regex) / AST (Tree-sitter)"]
            Embedding["AI Embedding<br/>transformers.js + ONNX Runtime"]
        end

        subgraph AI["AI Model"]
            Model["nomic-embed-text-v1.5<br/>Matryoshka Representation Learning"]
            Dimensions["Flexible Dimensions<br/>64 | 128 | 256 | 512 | 768"]
            Normalize["Layer Norm → Slice → L2 Normalize"]
        end

        subgraph Search["Search"]
            QueryEmbed["Query → Vector"]
            Cosine["Cosine Similarity"]
            Hybrid["Hybrid Search<br/>Semantic + Exact Match Boost"]
        end
    end

    subgraph Storage["Cache"]
        Vectors["SQLite Database<br/>embeddings.db (WAL mode)"]
        Hashes["File Hashes<br/>Incremental updates"]
        Progressive["Progressive Indexing<br/>Search works during indexing"]
    end

    Agent <-->|"MCP Protocol"| Protocol
    Protocol --> Tools

    Tools --> Discovery
    Discovery --> Chunking
    Chunking --> Embedding
    Embedding --> Model
    Model --> Dimensions
    Dimensions --> Normalize
    Normalize --> Vectors

    Tools --> QueryEmbed
    QueryEmbed --> Model
    Cosine --> Hybrid
    Vectors --> Cosine
    Hybrid --> Agent

Tech Stack

Component Technology
Protocol Model Context Protocol (JSON-RPC)
AI Model nomic-embed-text-v1.5 (MRL)
Inference transformers.js + ONNX Runtime
Chunking Smart regex / Tree-sitter AST
Search Cosine similarity + exact match boost
Cache SQLite with WAL mode

Privacy

Everything runs 100% locally:

  • AI model runs on your machine (no API calls)
  • Code never leaves your system
  • No telemetry or analytics
  • Cache stored in .smart-coding-cache/

Research Background

This project builds on research from Cursor showing that semantic search improves AI coding agent performance by 12.5% on average. The key insight: AI assistants benefit more from relevant context than from large amounts of context.

License

MIT License - Copyright (c) 2025 Omar Haris

See LICENSE for full text.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选