Smart Connections MCP Server

Smart Connections MCP Server

Enables semantic search and knowledge graph exploration of Obsidian vaults using Smart Connections embeddings. Provides intelligent note discovery, similarity search, and connection mapping through natural language queries.

Category
访问服务器

README

Smart Connections MCP Server

A Model Context Protocol (MCP) server that provides semantic search and knowledge graph capabilities for Obsidian vaults using Smart Connections embeddings.

Overview

This MCP server allows Claude (and other MCP clients) to:

  • Search semantically through your Obsidian notes using pre-computed embeddings
  • Find similar notes based on content similarity
  • Build connection graphs showing how notes are related
  • Query by embedding vectors for advanced use cases
  • Access note content with block-level granularity

Features

🔍 Semantic Search

Uses the embeddings generated by Obsidian's Smart Connections plugin to perform fast, accurate semantic searches across your entire vault.

🕸️ Connection Graphs

Builds multi-level connection graphs showing how notes are related through semantic similarity, helping discover hidden relationships in your knowledge base.

📊 Vector Similarity

Direct access to embedding-based similarity calculations using cosine similarity on 384-dimensional vectors (TaylorAI/bge-micro-v2 model).

📝 Content Access

Retrieve full note content or specific sections/blocks with intelligent extraction based on Smart Connections block mappings.

Installation

Prerequisites

  • Node.js 18 or higher
  • An Obsidian vault with Smart Connections plugin installed and embeddings generated
  • Claude Desktop (or another MCP client)

Setup

  1. Clone the repository:

    git clone https://github.com/msdanyg/smart-connections-mcp.git
    cd smart-connections-mcp
    
  2. Install dependencies:

    npm install
    
  3. Build the TypeScript project:

    npm run build
    
  4. Configure Claude Desktop:

    Edit your Claude Desktop configuration file:

    • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
    • Windows: %APPDATA%\Claude\claude_desktop_config.json

    Add the following to the mcpServers section:

    {
      "mcpServers": {
        "smart-connections": {
          "command": "node",
          "args": [
            "/ABSOLUTE/PATH/TO/smart-connections-mcp/dist/index.js"
          ],
          "env": {
            "SMART_VAULT_PATH": "/ABSOLUTE/PATH/TO/YOUR/OBSIDIAN/VAULT"
          }
        }
      }
    }
    

    Important: Replace the paths with your actual paths:

    • Update the args path to point to your built index.js file
    • Update SMART_VAULT_PATH to your Obsidian vault path
  5. Restart Claude Desktop

    The MCP server will automatically start when Claude Desktop launches.

Available Tools

1. get_similar_notes

Find notes semantically similar to a given note.

Parameters:

  • note_path (string, required): Path to the note (e.g., "Note.md" or "Folder/Note.md")
  • threshold (number, optional): Similarity threshold 0-1, default 0.5
  • limit (number, optional): Maximum results, default 10

Example:

{
  "note_path": "MyNote.md",
  "threshold": 0.7,
  "limit": 5
}

Returns:

[
  {
    "path": "RelatedNote.md",
    "similarity": 0.85,
    "blocks": ["#Overview", "#Key Points", "#Details"]
  }
]

2. get_connection_graph

Build a multi-level connection graph showing how notes are semantically connected.

Parameters:

  • note_path (string, required): Starting note path
  • depth (number, optional): Graph depth (levels), default 2
  • threshold (number, optional): Similarity threshold 0-1, default 0.6
  • max_per_level (number, optional): Max connections per level, default 5

Example:

{
  "note_path": "MyNote.md",
  "depth": 2,
  "threshold": 0.7
}

Returns:

{
  "path": "MyNote.md",
  "depth": 0,
  "similarity": 1.0,
  "connections": [
    {
      "path": "RelatedNote.md",
      "depth": 1,
      "similarity": 0.82,
      "connections": [...]
    }
  ]
}

3. search_notes

Search notes using a text query (keyword-based, ranked by relevance).

Parameters:

  • query (string, required): Search query text
  • limit (number, optional): Maximum results, default 10
  • threshold (number, optional): Relevance threshold 0-1, default 0.5

Example:

{
  "query": "project management",
  "limit": 5
}

4. get_embedding_neighbors

Find nearest neighbors for a given embedding vector (advanced use).

Parameters:

  • embedding_vector (number[], required): 384-dimensional vector
  • k (number, optional): Number of neighbors, default 10
  • threshold (number, optional): Similarity threshold 0-1, default 0.5

5. get_note_content

Retrieve full note content with optional block extraction.

Parameters:

  • note_path (string, required): Path to the note
  • include_blocks (string[], optional): Specific block headings to extract

Example:

{
  "note_path": "MyNote.md",
  "include_blocks": ["#Introduction", "#Main Points"]
}

Returns:

{
  "content": "# Full note content...",
  "blocks": {
    "#Introduction": "Content of this section...",
    "#Main Points": "Content of this section..."
  }
}

6. get_stats

Get statistics about the knowledge base.

Parameters: None

Returns:

{
  "totalNotes": 137,
  "totalBlocks": 1842,
  "embeddingDimension": 384,
  "modelKey": "TaylorAI/bge-micro-v2"
}

Usage Examples

Once configured, you can ask Claude to use these tools naturally:

  • "Find notes similar to my project planning document"
  • "Show me a connection graph starting from my main research note"
  • "Search my notes for information about [your topic]"
  • "What's in my note about [topic]?"
  • "Give me stats about my knowledge base"

Architecture

┌─────────────────────────────────────────────────────────────┐
│                      Claude Desktop                         │
│                    (MCP Client)                             │
└─────────────────────────┬───────────────────────────────────┘
                          │
                          │ MCP Protocol (stdio)
                          │
┌─────────────────────────▼───────────────────────────────────┐
│              Smart Connections MCP Server                   │
│  ┌─────────────────────────────────────────────────────┐   │
│  │  index.ts (MCP Server + Tool Handlers)             │   │
│  └────────────────┬────────────────────────────────────┘   │
│                   │                                         │
│  ┌────────────────▼────────────────────────────────────┐   │
│  │  search-engine.ts (Semantic Search Logic)          │   │
│  │  - getSimilarNotes()                               │   │
│  │  - getConnectionGraph()                            │   │
│  │  - searchByQuery()                                 │   │
│  └────────────────┬────────────────────────────────────┘   │
│                   │                                         │
│  ┌────────────────▼────────────────────────────────────┐   │
│  │  smart-connections-loader.ts (Data Access)         │   │
│  │  - Load .smart-env/smart_env.json                  │   │
│  │  - Load .smart-env/multi/*.ajson embeddings        │   │
│  │  - Read note content from vault                    │   │
│  └────────────────┬────────────────────────────────────┘   │
│                   │                                         │
│  ┌────────────────▼────────────────────────────────────┐   │
│  │  embedding-utils.ts (Vector Math)                  │   │
│  │  - cosineSimilarity()                              │   │
│  │  - findNearestNeighbors()                          │   │
│  └─────────────────────────────────────────────────────┘   │
└─────────────────────────┬───────────────────────────────────┘
                          │
                          │ File System Access
                          │
┌─────────────────────────▼───────────────────────────────────┐
│            Obsidian Vault + .smart-env/                     │
│  - smart_env.json (config)                                  │
│  - multi/*.ajson (embeddings for 137 notes)                 │
│  - *.md (markdown note files)                               │
└─────────────────────────────────────────────────────────────┘

Technical Details

Embedding Model

  • Model: TaylorAI/bge-micro-v2
  • Dimensions: 384
  • Similarity Metric: Cosine similarity

Data Format

The server reads from Obsidian's Smart Connections .smart-env/ directory:

  • smart_env.json: Configuration and model settings
  • multi/*.ajson: Per-note embeddings and block mappings

Performance

  • Load time: ~2-5 seconds for 137 notes
  • Search: Near-instant (<50ms) using pre-computed embeddings
  • Memory: ~20-30MB for embeddings + note index

Development

Build

npm run build

Watch Mode

npm run watch

Run Locally

export SMART_VAULT_PATH="/path/to/your/vault"
npm run dev

Project Structure

smart-connections-mcp/
├── src/
│   ├── index.ts                    # MCP server & tool handlers
│   ├── search-engine.ts            # Semantic search logic
│   ├── smart-connections-loader.ts # Data loading
│   ├── embedding-utils.ts          # Vector math utilities
│   └── types.ts                    # TypeScript type definitions
├── dist/                           # Compiled JavaScript (generated)
├── package.json
├── tsconfig.json
└── README.md

Troubleshooting

"Smart Connections directory not found"

  • Ensure your vault has the Smart Connections plugin installed
  • Verify embeddings have been generated (check .smart-env/multi/ directory)
  • Check that SMART_VAULT_PATH points to the correct vault

"Configuration file not found"

  • Run Smart Connections in Obsidian at least once to generate configuration
  • Check for .smart-env/smart_env.json in your vault

"No embeddings found for note"

  • Some notes may not have embeddings if they're too short (< 200 chars)
  • Re-run Smart Connections embedding generation in Obsidian

Server not appearing in Claude Desktop

  • Verify the configuration file syntax (JSON must be valid)
  • Check the file paths are absolute paths, not relative
  • Restart Claude Desktop completely
  • Check Claude Desktop logs for error messages

License

MIT

Author

Daniel Glickman

Acknowledgments

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选