Smart Connections MCP Server

Smart Connections MCP Server

Enables Claude to perform semantic search across your Obsidian vault using Smart Connections vector database. Provides meaning-based search, related note discovery, and context retrieval for RAG queries instead of basic keyword matching.

Category
访问服务器

README

Smart Connections MCP Server

Exposes your Obsidian Smart Connections vector database to Claude Code via Model Context Protocol (MCP).

What This Does

Instead of using text-based Grep, Claude Code can now perform semantic search across your vault:

  • semantic_search: Find notes by meaning, not keywords
  • find_related: Get related notes (like Smart Connections sidebar)
  • get_context_blocks: Get best context for RAG queries

Architecture

Smart Connections Plugin
    ↓ (creates)
.smart-env/multi/*.ajson
    ↓ (reads)
This MCP Server
    ↓ (exposes via)
MCP Protocol
    ↓ (consumed by)
Claude Code

Installation

Quick Install (Recommended)

cd ~/smart-connections-mcp
./install.sh

The script will:

  • ✅ Install UV package manager (if needed)
  • ✅ Create virtual environment
  • ✅ Install all dependencies
  • ✅ Auto-detect your Obsidian vault
  • ✅ Configure ~/.mcp.json
  • ✅ Verify installation

Manual Installation

<details> <summary>Click to expand manual installation steps</summary>

1. Install UV

curl -LsSf https://astral.sh/uv/install.sh | sh

2. Create Virtual Environment and Install Dependencies

cd ~/smart-connections-mcp
uv venv
uv pip install -r requirements.txt

Important dependencies:

  • mcp>=1.0.0 - Official Model Context Protocol SDK
  • sentence-transformers>=2.2.0 - For semantic search
  • numpy<2.0.0 - Version 1.x required (2.x breaks compatibility)
  • torch>=2.0.0 and transformers>=4.30.0 - ML dependencies

3. Configure Claude Code

Add to ~/.mcp.json:

{
  "mcpServers": {
    "smart-connections": {
      "command": "/Users/YOUR_USERNAME/smart-connections-mcp/.venv/bin/python",
      "args": ["/Users/YOUR_USERNAME/smart-connections-mcp/server.py"],
      "env": {
        "OBSIDIAN_VAULT_PATH": "/path/to/your/obsidian/vault"
      }
    }
  }
}

Note: Use the virtual environment Python, not system Python!

4. Verify Installation

claude mcp list

Expected output:

smart-connections: .venv/bin/python server.py - ✓ Connected

</details>

Migration to New Machine

See DEPLOYMENT.md for detailed migration guide.

Quick migration:

# On new machine
git clone https://github.com/dan6684/smart-connections-mcp.git ~/smart-connections-mcp
cd ~/smart-connections-mcp
./install.sh

Important: Keep this MCP server in a separate repository from your Obsidian vault. See DEPLOYMENT.md for rationale and best practices.

Troubleshooting

If you see timeout issues, see TROUBLESHOOTING.md.

Usage Examples

Semantic Search

Old way (Grep):

Grep pattern: "self-compassion"
→ Only finds notes with exact word "self-compassion"

New way (Semantic Search):

semantic_search(query: "recognizing self-worth and releasing shame")
→ Finds: Ann Shulgin note ("I am a treasure")
        BM playa note ("I am beautiful, playa saved me")
        Therapy notes (related concepts)

Find Related Notes

Like Smart Connections sidebar:

find_related(file_path: "DailyNotes/2025-10-25.md")
→ Returns top 10 semantically similar notes

Get Context for RAG

Build context for complex queries:

get_context_blocks(query: "transformation through embodiment")
→ Returns actual text blocks most relevant to query
→ Claude can use these for grounded answers

How It Works

  1. Reads existing embeddings from .smart-env/multi/*.ajson
  2. No re-indexing needed - uses Smart Connections' work
  3. Same model (BGE-micro-v2) for query encoding
  4. Cosine similarity to rank results
  5. Returns JSON with file paths, similarity scores, metadata

Tools Provided

semantic_search

semantic_search(
    query: str,           # Natural language query
    limit: int = 10,      # Max results
    min_similarity: float = 0.3  # Threshold
)

Returns:

{
  "query": "self-compassion",
  "results_count": 5,
  "results": [
    {
      "path": "DailyNotes/2025-08-29.md",
      "similarity": 0.87,
      "key": "smart_sources:DailyNotes/2025-08-29.md",
      "metadata": {"tags": ["#Dream", "#grateful"]}
    }
  ]
}

find_related

find_related(
    file_path: str,      # e.g., "DailyNotes/2025-10-25.md"
    limit: int = 10
)

get_context_blocks

get_context_blocks(
    query: str,
    max_blocks: int = 5
)

Returns actual text content (not just paths) for RAG.

Performance

  • Initial load: ~2-3 seconds (loads 3,249 embeddings)
  • Query time: ~100-200ms (cosine similarity across all embeddings)
  • Memory: ~50MB (cached embeddings)

Troubleshooting

See TROUBLESHOOTING.md for detailed debugging guide.

Common Issues

Server Timeout on claude mcp list

Symptoms: Connection hangs, no response after 30+ seconds

Fixes:

  1. Ensure using virtual environment Python (not system Python)
  2. Verify NumPy version is <2.0.0: uv pip list | grep numpy
  3. Check server starts manually:
    OBSIDIAN_VAULT_PATH="/path/to/vault" .venv/bin/python server.py
    

Import Errors

Error: ImportError: numpy.core.multiarray failed to import

Fix: Reinstall with NumPy 1.x:

uv pip install "numpy<2.0.0" --force-reinstall

No Results Returned

  • Check .smart-env/multi/ has .ajson files
  • Verify Smart Connections is enabled in Obsidian
  • Lower min_similarity threshold (try 0.2 instead of 0.3)

Wrong Results

  • Smart Connections may need to re-index
  • Check embedding model matches (BGE-micro-v2)
  • Restart server to reload embeddings

Development

Update embeddings:

  • Smart Connections auto-updates .smart-env/
  • MCP server reads on startup (restart to refresh)
  • Future: Add file watcher for auto-reload

Add new tools: Edit handle_request() in server.py

License

MIT - Use freely for personal PKM workflows

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选