Smithsonian Open Access MCP Server
Provides AI assistants with access to search, explore, and analyze over 3 million collection objects from the Smithsonian Institution's museums. Enables finding objects currently on exhibit, retrieving detailed metadata, high-resolution images, and 3D models from America's national museums.
README
Smithsonian Open Access MCP Server
A Model Context Protocol (MCP) server that provides AI assistants with access to the Smithsonian Institution's Open Access collections. This server allows AI tools like Claude Desktop to search, explore, and analyze over 3 million collection objects from America's national museums.
Quick Start
Option 1: npm/npx Installation (Easiest)
The npm package includes automatic Python dependency management and works across platforms:
# Install globally
npm install -g @molanojustin/smithsonian-mcp
# Or run directly with npx (no installation needed)
npx -y @molanojustin/smithsonian-mcp
# Set your API key
export SMITHSONIAN_API_KEY=your_key_here
# Start the server
smithsonian-mcp
Option 2: Automated Setup (Recommended for Python users)
The enhanced setup script now includes:
- ✅ API key validation - Tests your key before saving
- ✅ Service installation - Auto-install as system service
- ✅ Claude Desktop config - Automatic configuration
- ✅ Health checks - Verify everything works macOS/Linux:
chmod +x setup.sh
./setup.sh
Windows:
.\setup.ps1
Option 3: Manual Setup
- Get API Key: api.data.gov/signup (free)
- Install:
pip install -r requirements.txt - Configure: Copy
.env.exampleto.envand set your API key - Test:
python examples/test-api-connection.py
Verify Setup
Run the verification script to check your installation:
python scripts/verify-setup.py
Features
Core Functionality
- Search Collections: 3+ million objects across 19 Smithsonian museums
- Object Details: Complete metadata, descriptions, and provenance
- On-View Status: ⭐ NEW - Find objects currently on physical exhibit
- Image Access: High-resolution images (CC0 licensed when available)
- 3D Models: Interactive 3D content where available
- Museum Information: Browse all Smithsonian institutions
AI Integration
- 12 MCP Tools: Search, filter, retrieve collection data, check exhibition status, and get context
- Smart Context: Contextual data sources for AI assistants
- Rich Metadata: Complete object information and exhibition details
- Exhibition Planning: ⭐ NEW - Tools to find and explore currently exhibited objects
Integration
Claude Desktop
Option 1: Using npm/npx (Recommended)
- Configure (
claude_desktop_config.json):
{
"mcpServers": {
"smithsonian_open_access": {
"command": "npx",
"args": ["-y", "@molanojustin/smithsonian-mcp"],
"env": {
"SMITHSONIAN_API_KEY": "your_key_here"
}
}
}
}
Option 2: Using Python installation
- Configure (
claude_desktop_config.json):
{
"mcpServers": {
"smithsonian_open_access": {
"command": "python",
"args": ["-m", "smithsonian_mcp.server"],
"env": {
"SMITHSONIAN_API_KEY": "your_key_here"
}
}
}
}
Or copy the provided claude-desktop-config.json and update the API key
- Test: Ask Claude "What Smithsonian museums are available?"
mcpo Integration (MCP Orchestrator)
mcpo is an MCP orchestrator that converts multiple MCP servers into OpenAPI/HTTP endpoints, ideal for combining multiple services into a single systemd service.
Installation
# Install mcpo
pip install mcpo
# Or using uvx
uvx mcpo --help
Configuration
Create a mcpo-config.json file:
{
"mcpServers": {
"smithsonian_open_access": {
"command": "python",
"args": ["-m", "smithsonian_mcp.server"],
"env": {
"SMITHSONIAN_API_KEY": "your_api_key_here"
}
},
"memory": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-memory"]
},
"time": {
"command": "uvx",
"args": ["mcp-server-time", "--local-timezone=America/New_York"]
}
}
}
Running with mcpo
# Start mcpo with hot-reload
mcpo --config mcpo-config.json --port 8000 --hot-reload
# With API key authentication
mcpo --config mcpo-config.json --port 8000 --api-key "your_secret_key"
# Access endpoints:
# - Smithsonian: http://localhost:8000/smithsonian_open_access
# - Memory: http://localhost:8000/memory
# - Time: http://localhost:8000/time
# - API docs: http://localhost:8000/docs
Systemd Service
Create /etc/systemd/system/mcpo.service:
[Unit]
Description=MCP Orchestrator Service
After=network.target
[Service]
Type=simple
User=your-user
WorkingDirectory=/path/to/your/config
Environment=PATH=/path/to/venv/bin
ExecStart=/path/to/venv/bin/mcpo --config mcpo-config.json --port 8000
Restart=always
RestartSec=10
[Install]
WantedBy=multi-user.target
# Enable and start service
sudo systemctl enable mcpo
sudo systemctl start mcpo
sudo systemctl status mcpo
Troubleshooting mcpo
"ModuleNotFoundError: No module named 'smithsonian_mcp'" This occurs when mcpo can't find the Smithsonian MCP module. Fix by:
- Use absolute Python path in your mcpo config:
{
"command": "/full/path/to/your/project/.venv/bin/python",
"env": {
"PYTHONPATH": "/full/path/to/your/project"
}
}
- Verify paths:
# Check Python executable exists
ls -la /path/to/your/project/.venv/bin/python
# Test module import
/path/to/your/project/.venv/bin/python -c "import smithsonian_mcp; print('OK')"
- Regenerate config with setup script:
./setup.sh # Will create mcpo-config.json with correct paths
"Connection closed" errors
- Ensure API key is valid and set in environment
- Check that the virtual environment has all dependencies installed
- Verify the MCP server can start manually:
python -m smithsonian_mcp.server --test
"Port 8000 already in use"
# Check what's using the port
lsof -i :8000
# Or use different port
mcpo --config mcpo-config.json --port 8001
VS Code
- Open Workspace:
code .vscode/smithsonian-mcp-workspace.code-workspace - Run Tasks: Debug, test, and develop the MCP server
- Claude Code: AI-assisted development with Smithsonian data
Available Data
- 19 Museums: NMNH, NPG, SAAM, NASM, NMAH, and more
- 3+ Million Objects: Digitized collection items
- CC0 Content: Public domain materials for commercial use
- Rich Metadata: Creators, dates, materials, dimensions
- High-Resolution Images: Professional photography
- 3D Models: Interactive digital assets
MCP Tools
Search & Discovery
search_collections- Advanced search with filters (now includeson_viewparameter)get_object_details- Detailed object informationsearch_by_unit- Museum-specific searches- ⭐
get_objects_on_view- NEW - Find objects currently on physical exhibit - ⭐
check_object_on_view- NEW - Check if a specific object is on display
Information & Context
get_smithsonian_units- List all museumsget_collection_statistics- Collection metricsget_search_context- Get search results as context dataget_object_context- Get detailed object information as contextget_units_context- Get list of units as context dataget_stats_context- Get collection statistics as context- ⭐
get_on_view_context- NEW - Get currently exhibited objects as context
New: On-View Functionality 🎨
What's New in Phase 1
The MCP server now includes comprehensive support for finding objects currently on physical exhibit at Smithsonian museums. This is a priority feature aligned with the Smithsonian's official API documentation.
Key Features
- Find Exhibited Objects: Search for objects currently on display
- Check Exhibition Status: Verify if specific objects are on view
- Filter by Museum: Find what's on display at specific Smithsonian units
- Exhibition Details: Access exhibition title and location information
- Combined Filters: Mix on-view status with other search criteria
Usage Examples
Find all objects currently on view:
# Ask Claude:
"What objects are currently on physical exhibit at the Smithsonian?"
# Or with filters:
"Show me paintings currently on display at the National Portrait Gallery"
Check if a specific object is on view:
# Ask Claude:
"Is object edanmdm-nmah_1234567 currently on display?"
Combine with other filters:
# Ask Claude:
"Find CC0 licensed objects currently on view with high-resolution images"
Tool Details
get_objects_on_view
Find objects currently on physical exhibit.
Parameters:
unit_code(optional): Filter by Smithsonian unit (e.g., "NMNH", "NPG")limit: Maximum results (default: 20, max: 100)offset: Pagination offset
Returns: Search results containing objects currently on exhibit
check_object_on_view
Check if a specific object is currently on display.
Parameters:
object_id: Unique identifier for the object
Returns: Object details including exhibition status
search_collections (enhanced)
Now includes on_view parameter for filtering.
New Parameter:
on_view(boolean): Filter objects by exhibition statusTrue: Only objects currently on displayFalse: Only objects not on displayNone: No filter (default)
Implementation Notes
This feature is based on the Smithsonian's onPhysicalExhibit metadata field, which indicates whether an object is currently accessible to the public in a physical exhibition. The implementation includes:
- Full API alignment with EDAN metadata model v1.09
- Fielded search support using
onPhysicalExhibit:"Yes"queries - Comprehensive test coverage (15 unit tests)
- Exhibition metadata extraction (title, location)
Use Cases
Research & Education
- Scholarly Research: Multi-step academic investigation
- Lesson Planning: Educational content creation
- Object Analysis: In-depth cultural object study
Curation & Exhibition
- Exhibition Planning: Thematic object selection and visitor planning
- Visit Planning: ⭐ NEW - Find what's currently on display before visiting
- Exhibition Research: ⭐ NEW - Study current exhibition trends and displays
- Collection Development: Gap analysis and acquisition
- Digital Humanities: Large-scale analysis projects
Development
- Cultural Apps: Applications using museum data
- Educational Tools: Interactive learning platforms
- API Integration: Professional development workflows
Requirements
For npm/npx installation:
- Node.js 16.0 or higher
- Python 3.10 or higher (auto-detected and dependencies managed)
- API key from api.data.gov (free)
- Internet connection for API access
For Python installation:
- Python 3.10 or higher
- API key from api.data.gov (free)
- Internet connection for API access
Testing
Using npm/npx:
# Test API connection
smithsonian-mcp --test
# Run MCP server
smithsonian-mcp
# Show help
smithsonian-mcp --help
Using Python:
# Test API connection
python examples/test-api-connection.py
# Run MCP server
python -m smithsonian_mcp.server
# Run test suite
pytest tests/
# Run on-view functionality tests
pytest tests/test_on_view.py -v
# Run basic tests
pytest tests/test_basic.py -v
# Verify complete setup
python scripts/verify-setup.py
# VS Code Tasks (if using workspace)
# - Test MCP Server
# - Run Tests
# - Format Code
# - Lint Code
Service Management
Linux (systemd)
# Start service
systemctl --user start smithsonian-mcp
# Stop service
systemctl --user stop smithsonian-mcp
# Check status
systemctl --user status smithsonian-mcp
# Enable on boot
systemctl --user enable smithsonian-mcp
macOS (launchd)
# Load service
launchctl load ~/Library/LaunchAgents/com.smithsonian.mcp.plist
# Unload service
launchctl unload ~/Library/LaunchAgents/com.smithsonian.mcp.plist
# Check status
launchctl list | grep com.smithsonian.mcp
Windows
# Start service
Start-Service SmithsonianMCP
# Stop service
Stop-Service SmithsonianMCP
# Check status
Get-Service SmithsonianMCP
Troubleshooting
Common Issues
"API key validation failed"
- Get a free key from api.data.gov/signup
- Ensure no extra spaces in your API key
- Check that
.envfile contains:SMITHSONIAN_API_KEY=your_key_here
"Service failed to start"
- Run
python scripts/verify-setup.pyfor diagnostics - Check logs:
journalctl --user -u smithsonian-mcp(Linux) or~/Library/Logs/com.smithsonian.mcp.log(macOS) - Ensure virtual environment is activated
"Claude Desktop not connecting"
- Restart Claude Desktop after configuration
- Check Claude Desktop config file exists and contains correct paths
- Verify MCP server is running:
python -m smithsonian_mcp.server
"Module import errors"
- Activate virtual environment:
source .venv/bin/activate(Linux/macOS) or.\venv\Scripts\Activate.ps1(Windows) - Reinstall dependencies:
pip install -r requirements.txt
Getting Help
- Run verification script:
python scripts/verify-setup.py - Check the Integration Guide
- Review GitHub Issues
Documentation
- Integration Guide: Claude Desktop and VS Code setup
- API Reference: Complete tool and resource documentation
- Examples: Real-world usage scenarios
- Deployment Guide: Production deployment options
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Run tests
- Submit a pull request
License
MIT License - see LICENSE file for details.
Acknowledgments
- Smithsonian Institution for Open Access collections
- api.data.gov for API infrastructure
- FastMCP team for the MCP framework
- Model Context Protocol community
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。