Smithsonian Open Access MCP Server

Smithsonian Open Access MCP Server

Provides AI assistants with access to search, explore, and analyze over 3 million collection objects from the Smithsonian Institution's museums. Enables finding objects currently on exhibit, retrieving detailed metadata, high-resolution images, and 3D models from America's national museums.

Category
访问服务器

README

Smithsonian Open Access MCP Server

npm version NPM Downloads

A Model Context Protocol (MCP) server that provides AI assistants with access to the Smithsonian Institution's Open Access collections. This server allows AI tools like Claude Desktop to search, explore, and analyze over 3 million collection objects from America's national museums.

Quick Start

Option 1: npm/npx Installation (Easiest)

The npm package includes automatic Python dependency management and works across platforms:

# Install globally
npm install -g @molanojustin/smithsonian-mcp

# Or run directly with npx (no installation needed)
npx -y @molanojustin/smithsonian-mcp

# Set your API key
export SMITHSONIAN_API_KEY=your_key_here

# Start the server
smithsonian-mcp

Option 2: Automated Setup (Recommended for Python users)

The enhanced setup script now includes:

  • API key validation - Tests your key before saving
  • Service installation - Auto-install as system service
  • Claude Desktop config - Automatic configuration
  • Health checks - Verify everything works macOS/Linux:
chmod +x setup.sh
./setup.sh

Windows:

.\setup.ps1

Option 3: Manual Setup

  1. Get API Key: api.data.gov/signup (free)
  2. Install: pip install -r requirements.txt
  3. Configure: Copy .env.example to .env and set your API key
  4. Test: python examples/test-api-connection.py

Verify Setup

Run the verification script to check your installation:

python scripts/verify-setup.py

Features

Core Functionality

  • Search Collections: 3+ million objects across 19 Smithsonian museums
  • Object Details: Complete metadata, descriptions, and provenance
  • On-View Status: ⭐ NEW - Find objects currently on physical exhibit
  • Image Access: High-resolution images (CC0 licensed when available)
  • 3D Models: Interactive 3D content where available
  • Museum Information: Browse all Smithsonian institutions

AI Integration

  • 12 MCP Tools: Search, filter, retrieve collection data, check exhibition status, and get context
  • Smart Context: Contextual data sources for AI assistants
  • Rich Metadata: Complete object information and exhibition details
  • Exhibition Planning: ⭐ NEW - Tools to find and explore currently exhibited objects

Integration

Claude Desktop

Option 1: Using npm/npx (Recommended)

  1. Configure (claude_desktop_config.json):
{
  "mcpServers": {
    "smithsonian_open_access": {
      "command": "npx",
      "args": ["-y", "@molanojustin/smithsonian-mcp"],
      "env": {
        "SMITHSONIAN_API_KEY": "your_key_here"
      }
    }
  }
}

Option 2: Using Python installation

  1. Configure (claude_desktop_config.json):
{
  "mcpServers": {
    "smithsonian_open_access": {
      "command": "python",
      "args": ["-m", "smithsonian_mcp.server"],
      "env": {
        "SMITHSONIAN_API_KEY": "your_key_here"
      }
    }
  }
}

Or copy the provided claude-desktop-config.json and update the API key

  1. Test: Ask Claude "What Smithsonian museums are available?"

mcpo Integration (MCP Orchestrator)

mcpo is an MCP orchestrator that converts multiple MCP servers into OpenAPI/HTTP endpoints, ideal for combining multiple services into a single systemd service.

Installation

# Install mcpo
pip install mcpo

# Or using uvx
uvx mcpo --help

Configuration

Create a mcpo-config.json file:

{
  "mcpServers": {
    "smithsonian_open_access": {
      "command": "python",
      "args": ["-m", "smithsonian_mcp.server"],
      "env": {
        "SMITHSONIAN_API_KEY": "your_api_key_here"
      }
    },
    "memory": {
      "command": "npx",
      "args": ["-y", "@modelcontextprotocol/server-memory"]
    },
    "time": {
      "command": "uvx",
      "args": ["mcp-server-time", "--local-timezone=America/New_York"]
    }
  }
}

Running with mcpo

# Start mcpo with hot-reload
mcpo --config mcpo-config.json --port 8000 --hot-reload

# With API key authentication
mcpo --config mcpo-config.json --port 8000 --api-key "your_secret_key"

# Access endpoints:
# - Smithsonian: http://localhost:8000/smithsonian_open_access
# - Memory: http://localhost:8000/memory
# - Time: http://localhost:8000/time
# - API docs: http://localhost:8000/docs

Systemd Service

Create /etc/systemd/system/mcpo.service:

[Unit]
Description=MCP Orchestrator Service
After=network.target

[Service]
Type=simple
User=your-user
WorkingDirectory=/path/to/your/config
Environment=PATH=/path/to/venv/bin
ExecStart=/path/to/venv/bin/mcpo --config mcpo-config.json --port 8000
Restart=always
RestartSec=10

[Install]
WantedBy=multi-user.target
# Enable and start service
sudo systemctl enable mcpo
sudo systemctl start mcpo
sudo systemctl status mcpo

Troubleshooting mcpo

"ModuleNotFoundError: No module named 'smithsonian_mcp'" This occurs when mcpo can't find the Smithsonian MCP module. Fix by:

  1. Use absolute Python path in your mcpo config:
{
  "command": "/full/path/to/your/project/.venv/bin/python",
  "env": {
    "PYTHONPATH": "/full/path/to/your/project"
  }
}
  1. Verify paths:
# Check Python executable exists
ls -la /path/to/your/project/.venv/bin/python

# Test module import
/path/to/your/project/.venv/bin/python -c "import smithsonian_mcp; print('OK')"
  1. Regenerate config with setup script:
./setup.sh  # Will create mcpo-config.json with correct paths

"Connection closed" errors

  • Ensure API key is valid and set in environment
  • Check that the virtual environment has all dependencies installed
  • Verify the MCP server can start manually: python -m smithsonian_mcp.server --test

"Port 8000 already in use"

# Check what's using the port
lsof -i :8000
# Or use different port
mcpo --config mcpo-config.json --port 8001

VS Code

  1. Open Workspace: code .vscode/smithsonian-mcp-workspace.code-workspace
  2. Run Tasks: Debug, test, and develop the MCP server
  3. Claude Code: AI-assisted development with Smithsonian data

Available Data

  • 19 Museums: NMNH, NPG, SAAM, NASM, NMAH, and more
  • 3+ Million Objects: Digitized collection items
  • CC0 Content: Public domain materials for commercial use
  • Rich Metadata: Creators, dates, materials, dimensions
  • High-Resolution Images: Professional photography
  • 3D Models: Interactive digital assets

MCP Tools

Search & Discovery

  • search_collections - Advanced search with filters (now includes on_view parameter)
  • get_object_details - Detailed object information
  • search_by_unit - Museum-specific searches
  • get_objects_on_view - NEW - Find objects currently on physical exhibit
  • check_object_on_view - NEW - Check if a specific object is on display

Information & Context

  • get_smithsonian_units - List all museums
  • get_collection_statistics - Collection metrics
  • get_search_context - Get search results as context data
  • get_object_context - Get detailed object information as context
  • get_units_context - Get list of units as context data
  • get_stats_context - Get collection statistics as context
  • get_on_view_context - NEW - Get currently exhibited objects as context

New: On-View Functionality 🎨

What's New in Phase 1

The MCP server now includes comprehensive support for finding objects currently on physical exhibit at Smithsonian museums. This is a priority feature aligned with the Smithsonian's official API documentation.

Key Features

  • Find Exhibited Objects: Search for objects currently on display
  • Check Exhibition Status: Verify if specific objects are on view
  • Filter by Museum: Find what's on display at specific Smithsonian units
  • Exhibition Details: Access exhibition title and location information
  • Combined Filters: Mix on-view status with other search criteria

Usage Examples

Find all objects currently on view:

# Ask Claude:
"What objects are currently on physical exhibit at the Smithsonian?"

# Or with filters:
"Show me paintings currently on display at the National Portrait Gallery"

Check if a specific object is on view:

# Ask Claude:
"Is object edanmdm-nmah_1234567 currently on display?"

Combine with other filters:

# Ask Claude:
"Find CC0 licensed objects currently on view with high-resolution images"

Tool Details

get_objects_on_view

Find objects currently on physical exhibit.

Parameters:

  • unit_code (optional): Filter by Smithsonian unit (e.g., "NMNH", "NPG")
  • limit: Maximum results (default: 20, max: 100)
  • offset: Pagination offset

Returns: Search results containing objects currently on exhibit

check_object_on_view

Check if a specific object is currently on display.

Parameters:

  • object_id: Unique identifier for the object

Returns: Object details including exhibition status

search_collections (enhanced)

Now includes on_view parameter for filtering.

New Parameter:

  • on_view (boolean): Filter objects by exhibition status
    • True: Only objects currently on display
    • False: Only objects not on display
    • None: No filter (default)

Implementation Notes

This feature is based on the Smithsonian's onPhysicalExhibit metadata field, which indicates whether an object is currently accessible to the public in a physical exhibition. The implementation includes:

  • Full API alignment with EDAN metadata model v1.09
  • Fielded search support using onPhysicalExhibit:"Yes" queries
  • Comprehensive test coverage (15 unit tests)
  • Exhibition metadata extraction (title, location)

Use Cases

Research & Education

  • Scholarly Research: Multi-step academic investigation
  • Lesson Planning: Educational content creation
  • Object Analysis: In-depth cultural object study

Curation & Exhibition

  • Exhibition Planning: Thematic object selection and visitor planning
  • Visit Planning: ⭐ NEW - Find what's currently on display before visiting
  • Exhibition Research: ⭐ NEW - Study current exhibition trends and displays
  • Collection Development: Gap analysis and acquisition
  • Digital Humanities: Large-scale analysis projects

Development

  • Cultural Apps: Applications using museum data
  • Educational Tools: Interactive learning platforms
  • API Integration: Professional development workflows

Requirements

For npm/npx installation:

  • Node.js 16.0 or higher
  • Python 3.10 or higher (auto-detected and dependencies managed)
  • API key from api.data.gov (free)
  • Internet connection for API access

For Python installation:

  • Python 3.10 or higher
  • API key from api.data.gov (free)
  • Internet connection for API access

Testing

Using npm/npx:

# Test API connection
smithsonian-mcp --test

# Run MCP server
smithsonian-mcp

# Show help
smithsonian-mcp --help

Using Python:

# Test API connection
python examples/test-api-connection.py

# Run MCP server
python -m smithsonian_mcp.server

# Run test suite
pytest tests/

# Run on-view functionality tests
pytest tests/test_on_view.py -v

# Run basic tests
pytest tests/test_basic.py -v

# Verify complete setup
python scripts/verify-setup.py

# VS Code Tasks (if using workspace)
# - Test MCP Server
# - Run Tests
# - Format Code
# - Lint Code

Service Management

Linux (systemd)

# Start service
systemctl --user start smithsonian-mcp

# Stop service
systemctl --user stop smithsonian-mcp

# Check status
systemctl --user status smithsonian-mcp

# Enable on boot
systemctl --user enable smithsonian-mcp

macOS (launchd)

# Load service
launchctl load ~/Library/LaunchAgents/com.smithsonian.mcp.plist

# Unload service
launchctl unload ~/Library/LaunchAgents/com.smithsonian.mcp.plist

# Check status
launchctl list | grep com.smithsonian.mcp

Windows

# Start service
Start-Service SmithsonianMCP

# Stop service
Stop-Service SmithsonianMCP

# Check status
Get-Service SmithsonianMCP

Troubleshooting

Common Issues

"API key validation failed"

  • Get a free key from api.data.gov/signup
  • Ensure no extra spaces in your API key
  • Check that .env file contains: SMITHSONIAN_API_KEY=your_key_here

"Service failed to start"

  • Run python scripts/verify-setup.py for diagnostics
  • Check logs: journalctl --user -u smithsonian-mcp (Linux) or ~/Library/Logs/com.smithsonian.mcp.log (macOS)
  • Ensure virtual environment is activated

"Claude Desktop not connecting"

  • Restart Claude Desktop after configuration
  • Check Claude Desktop config file exists and contains correct paths
  • Verify MCP server is running: python -m smithsonian_mcp.server

"Module import errors"

  • Activate virtual environment: source .venv/bin/activate (Linux/macOS) or .\venv\Scripts\Activate.ps1 (Windows)
  • Reinstall dependencies: pip install -r requirements.txt

Getting Help

  1. Run verification script: python scripts/verify-setup.py
  2. Check the Integration Guide
  3. Review GitHub Issues

Documentation

  • Integration Guide: Claude Desktop and VS Code setup
  • API Reference: Complete tool and resource documentation
  • Examples: Real-world usage scenarios
  • Deployment Guide: Production deployment options

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Run tests
  5. Submit a pull request

License

MIT License - see LICENSE file for details.

Acknowledgments

  • Smithsonian Institution for Open Access collections
  • api.data.gov for API infrastructure
  • FastMCP team for the MCP framework
  • Model Context Protocol community

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选