Snippets MCP

Snippets MCP

Enables storing, searching, and managing code snippets using hybrid semantic search and keyword matching with automatic language detection and tag-based organization.

Category
访问服务器

README

Snippets MCP

  • MCP server for storing, searching, and managing code snippets using semantic search and traditional keyword matching.
  • Just tell your coding agent (claude code, cursor, cline, opencode, etc.) to save a certain snippet. That's it.
  • When needed, just tell it to search for code snippets related to: your query.

Features

  • Semantic search using AI embeddings to find snippets by meaning, not just keywords
  • Hybrid search combining semantic similarity and keyword matching
  • Automatic programming language detection
  • Tag-based organization and filtering
  • Date range filtering
  • No database needed. JSON based storage.
  • Vector embeddings cached for fast retrieval

Installation

npm install @freakynit/snippets-mcp

Available Tools

add-snippet

Adds a new code snippet to the database.

Parameters:

  • code (string, required) - The code content
  • tags (array, optional) - Array of tag strings
  • language (string, optional) - Programming language (auto-detected if not provided)
  • description (string, optional) - Text description for better semantic search

search-snippets

Searches snippets using hybrid semantic and keyword matching.

Parameters:

  • query (string, optional) - Natural language search query
  • tags (array, optional) - Filter by specific tags (AND logic)
  • language (string, optional) - Filter by programming language
  • dateStart (ISO date string, optional) - Filter by creation date start
  • dateEnd (ISO date string, optional) - Filter by creation date end
  • limit (number, optional) - Maximum results to return (default: 10)

update-snippet

Updates an existing snippet. Re-generates embeddings if code, tags, or description change.

Parameters:

  • id (string, required) - Snippet ID
  • updates (object) - Object containing fields to update (code, tags, language, description)

delete-snippet

Deletes a snippet from the database.

Parameters:

  • id (string, required) - Snippet ID

get-snippet

Retrieves a single snippet by ID.

Parameters:

  • id (string, required) - Snippet ID

Environment Variables

  1. SNIPPETS_FILE_PATH: Optional, Full path to file to save snippets and embeddings in. Defaults to ~/.snippets-mcp-db.json.

How It Works

The library uses a hybrid search approach:

  1. Semantic Search (70% weight) - Uses the all-MiniLM-L6-v2 model to perform vector searh against embeddings generated off code, description, tags and language.
  2. Keyword Matching (30% weight) - Traditional text matching for exact term matches based on code and tags.
  3. Hard Filters - Applied first to narrow results by tags, language, and date range.

Embeddings are generated once when adding/updating snippets and cached for fast retrieval.

Storage

Snippets are stored in a JSON file specified by environment variable SNIPPETS_FILE_PATH, or at default path: ~/.snippets-mcp-db.json with the following structure:

{
  "id": "uuid",
  "code": "string",
  "language": "string",
  "tags": ["array"],
  "description": "string",
  "embedding": [/* vector array */],
  "createdAt": "ISO date",
  "updatedAt": "ISO date"
}

Configuring using mcpServers json

For Mac and Linux

{
  "mcpServers": {
    "snippets-mcp": {
      "command": "npx",
      "args": ["-y", "@freakynit/snippets-mcp@latest"],
      "env": {
        "SNIPPETS_FILE_PATH": "Optional... path to save snippets and embeddings in.. should have .json extension"
      }
    }
  }
}

For Windows

{
  "mcpServers": {
    "snippets-mcp": {
      "command": "cmd",
      "args": ["/k", "npx", "-y", "@freakynit/snippets-mcp@latest"],
      "env": {
        "SNIPPETS_FILE_PATH": "Optional... path to save snippets and embeddings in.. should have .json extension"
      }
    }
  }
}

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选