Snowflake MCP Server (Read-Only)

Snowflake MCP Server (Read-Only)

Enables read-only interaction with Snowflake databases through SQL queries, schema exploration, and data insight tracking. Provides tools to query data, list databases/schemas/tables, describe table structures, and maintain a memo of discovered insights.

Category
访问服务器

README

Snowflake MCP Server

Slightly altered from https://github.com/isaacwasserman/mcp-snowflake-server


Overview

A Model Context Protocol (MCP) server implementation that provides database interaction with Snowflake. This server enables running SQL queries via tools and exposes data insights and schema context as resources. Does not include the ability to execute write operations, and includes a system prompt.


Components

Resources

  • memo://insights
    A continuously updated memo aggregating discovered data insights.
    Updated automatically when new insights are appended via the append_insight tool.

  • context://table/{table_name}
    (If prefetch enabled) Per-table schema summaries, including columns and comments, exposed as individual resources.


Tools

The server exposes the following tools:

Query Tools

  • read_query
    Execute SELECT queries to read data from the database.
    Input:
    • query (string): The SELECT SQL query to execute
      Returns: Query results as array of objects

Schema Tools

  • list_databases
    List all databases in the Snowflake instance.
    Returns: Array of database names

  • list_schemas
    List all schemas within a specific database.
    Input:

    • database (string): Name of the database
      Returns: Array of schema names
  • list_tables
    List all tables within a specific database and schema.
    Input:

    • database (string): Name of the database
    • schema (string): Name of the schema
      Returns: Array of table metadata
  • describe_table
    View column information for a specific table.
    Input:

    • table_name (string): Fully qualified table name (database.schema.table)
      Returns: Array of column definitions with names, types, nullability, defaults, and comments

Analysis Tools

  • append_insight
    Add new data insights to the memo resource.
    Input:
    • insight (string): Data insight discovered from analysis
      Returns: Confirmation of insight addition
      Effect: Triggers update of memo://insights resource

Usage with Claude Desktop

Installing via UVX

"mcpServers": {
  "snowflake_pip": {
    "command": "uvx",
    "args": [
      "--python=3.12",  // Optional: specify Python version <=3.12
      "mcp_snowflake_server",
      "--account", "your_account",
      "--warehouse", "your_warehouse",
      "--user", "your_user",
      "--password", "your_password",
      "--role", "your_role",
      "--database", "your_database",
      "--schema", "your_schema"
      // Optionally: "--log_dir", "/absolute/path/to/logs"
      // Optionally: "--log_level", "DEBUG"/"INFO"/"WARNING"/"ERROR"/"CRITICAL"
      // Optionally: "--exclude_tools", "{tool_name}", ["{other_tool_name}"]
    ]
  }
}

Installing Locally

  1. Install Claude AI Desktop App

  2. Install uv:

curl -LsSf https://astral.sh/uv/install.sh | sh
  1. Create a .env file with your Snowflake credentials:
SNOWFLAKE_USER="xxx@your_email.com"
SNOWFLAKE_ACCOUNT="xxx"
SNOWFLAKE_ROLE="xxx"
SNOWFLAKE_DATABASE="xxx"
SNOWFLAKE_SCHEMA="xxx"
SNOWFLAKE_WAREHOUSE="xxx"
SNOWFLAKE_PASSWORD="xxx"
# Alternatively, use external browser authentication:
# SNOWFLAKE_AUTHENTICATOR="externalbrowser"
  1. [Optional] Modify runtime_config.json to set exclusion patterns for databases, schemas, or tables.

  2. Test locally:

uv --directory /absolute/path/to/mcp_snowflake_server run mcp_snowflake_server
  1. Add the server to your claude_desktop_config.json:
"mcpServers": {
  "snowflake_local": {
    "command": "/absolute/path/to/uv",
    "args": [
      "--python=3.12",  // Optional
      "--directory", "/absolute/path/to/mcp_snowflake_server",
      "run", "mcp_snowflake_server"
      // Optionally: "--log_dir", "/absolute/path/to/logs"
      // Optionally: "--log_level", "DEBUG"/"INFO"/"WARNING"/"ERROR"/"CRITICAL"
      // Optionally: "--exclude_tools", "{tool_name}", ["{other_tool_name}"]
    ]
  }
}

Notes

  • The server supports filtering out specific databases, schemas, or tables via exclusion patterns.
  • The server exposes additional per-table context resources if prefetching is enabled.
  • The append_insight tool updates the memo://insights resource dynamically.

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选