Solana Model Context Protocol (MCP) Server
A Solana blockchain interaction server that allows AI tools to query blockchain data using natural language, access structured token information, and generate human-readable explanations of complex blockchain concepts.
README
Solana Model Context Protocol (MCP)
A comprehensive Solana blockchain interaction server that implements the Model Context Protocol (MCP), optimized for seamless integration with AI tools and interfaces.
What is Model Context Protocol?
Model Context Protocol (MCP) provides a standardized way for AI tools and language models to interact with blockchain data. This implementation allows AI agents to:
- Query Solana blockchain data using natural language
- Access structured token and account information
- Maintain context across multiple interactions
- Perform semantic searches across blockchain transactions
- Generate human-readable explanations of complex blockchain data
Why MCP for AI Integration?
MCP creates a bridge between AI agents and blockchain data, enabling:
- Contextual Understanding: AI models can maintain conversation history and build context about tokens and accounts
- Semantic Queries: Support for natural language processing to translate user queries into blockchain operations
- Structured Responses: Data is returned in standardized formats optimized for AI consumption
- Enhanced Explanations: Complex blockchain concepts are explained in accessible language
Features
- Natural Language Processing: Query blockchain data using everyday language
- Token Analysis: Comprehensive token information and metrics
- Semantic Search: Find transactions and activities based on meaning, not just exact matches
- Context Awareness: Server maintains session state and understands entity relationships
- Solana RPC Integration: Full access to Solana blockchain capabilities
- RESTful API: Easy integration with existing systems
- Docker Support: Simple deployment with containerization
Quick Start with Docker
Option 1: Using Docker Compose
# Clone the repository
git clone https://github.com/omaidf/solana-mcp.git
cd solana-mcp
# Build and start the container
docker-compose up -d
Option 2: Using Docker directly
# Build the Docker image
docker build -t solana-mcp .
# Run the container
docker run -p 8000:8000 solana-mcp
Environment Variables
Customize the server by setting the following environment variables:
SOLANA_RPC_URL=https://api.mainnet-beta.solana.com
SOLANA_COMMITMENT=confirmed
SOLANA_TIMEOUT=30
HOST=0.0.0.0
PORT=8000
LOG_LEVEL=INFO
LOG_FORMAT=json
ENVIRONMENT=production
METADATA_CACHE_SIZE=100
METADATA_CACHE_TTL=300
PRICE_CACHE_SIZE=500
PRICE_CACHE_TTL=60
API Endpoints
Core MCP Endpoints
GET /health- Health check endpointGET /version- Get API version information
Solana Token Analysis
GET /token-analysis/analyze/{mint}- Get comprehensive token analysisGET /token-analysis/metadata/{mint}- Get token metadataGET /token-analysis/supply/{mint}- Get token supply informationGET /token-analysis/price/{mint}- Get token price informationGET /token-analysis/holders/{mint}- Get token holder information
Natural Language Queries
POST /nlp/query- Submit natural language queries about the Solana blockchain
See API_DOCUMENTATION.md for complete API documentation.
Development
Prerequisites
- Python 3.9+
- pip
Setup
# Create and activate virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -e .
Running locally
python -m solana_mcp.main
The server will be available at http://localhost:8000.
MCP Integration Examples
Python
import httpx
import asyncio
async def get_token_analysis(mint_address):
async with httpx.AsyncClient() as client:
response = await client.get(f"http://localhost:8000/token-analysis/analyze/{mint_address}")
if response.status_code == 200:
return response.json()
else:
raise Exception(f"Error: {response.status_code} - {response.json().get('detail')}")
# Example usage
async def main():
try:
token_data = await get_token_analysis("EPjFWdd5AufqSSqeM2qN1xzybapC8G4wEGGkZwyTDt1v")
print(f"Token name: {token_data['token_name']}")
print(f"Current price: ${token_data['current_price_usd']}")
except Exception as e:
print(f"Failed to get token data: {e}")
if __name__ == "__main__":
asyncio.run(main())
License
See the LICENSE file for details.
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Author
Created by omaidf
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。