Sonarr MCP Server

Sonarr MCP Server

Enables AI assistants to manage TV series collections through Sonarr's API using natural language interactions. Supports searching, adding, updating, and deleting TV series with detailed control over quality profiles, season monitoring, and episode downloads.

Category
访问服务器

README

Sonarr MCP Server

A Model Context Protocol (MCP) server for Sonarr, enabling AI assistants to manage your TV series collection through natural language interactions.

Features

  • 🔍 Search Series - Find TV series to add to your collection
  • Add Series - Add TV series with quality profiles, season monitoring, and search options
  • 📋 List Series - View your entire TV series library with episode counts
  • 📺 Series Details - Get detailed information including episode status and downloads
  • ⚙️ Update Series - Change quality profiles, season monitoring, and trigger searches
  • 🗑️ Delete Series/Seasons - Remove entire series or specific seasons (with optional file deletion)
  • 🔍 Interactive Search - Browse available releases for episodes with quality and seeder info
  • 📊 Quality Profiles - View available quality settings
  • ⬇️ Download Release - Manually download specific releases for episodes
  • 🎯 Season Control - Granular monitoring and management of individual seasons

Installation

From PyPI (Recommended)

pip install sonarr-mcp

From Source

git clone https://github.com/MichaelReubenDev/sonarr-mcp.git
cd sonarr-mcp
uv sync

Usage

Command Line

# Using uvx (if installed from PyPI)
uvx sonarr-mcp --url http://localhost:8989 --api-token YOUR_API_TOKEN

# Using uv run (from source)
uv run sonarr-mcp --url http://localhost:8989 --api-token YOUR_API_TOKEN

# With debug logging
uv run sonarr-mcp --url http://localhost:8989 --api-token YOUR_API_TOKEN --debug

With Claude Desktop

Add this to your Claude Desktop MCP configuration:

{
  "mcpServers": {
    "sonarr": {
      "command": "uvx",
      "args": [
        "sonarr-mcp",
        "--url", "http://localhost:8989",
        "--api-token", "YOUR_API_TOKEN"
      ]
    }
  }
}

With MCP Inspector

For testing and development:

npx @modelcontextprotocol/inspector uv run sonarr-mcp --url http://localhost:8989 --api-token YOUR_API_TOKEN

Configuration

Required Parameters

  • --url: Your Sonarr base URL (e.g., http://localhost:8989)
  • --api-token: Your Sonarr API token (found in Settings → General → Security)

Optional Parameters

  • --debug: Enable debug logging

Available Tools

Tool Description Parameters
search_series Search for TV series to add query (string)
add_series Add a TV series to Sonarr tvdb_id (int), quality_profile_id (int), monitor_type (string, required), root_folder_path (string, default: "/tv"), season_folder (bool, default: true), monitor_seasons (array, optional), search_for_missing_episodes (bool, default: false)
list_series List all TV series in library None
get_series Get detailed series information series_id (int)
update_series Update series settings series_id (int), quality_profile_id (int, optional), monitor_type (string, optional), monitor_seasons (array, optional), start_search (bool, default: false)
delete_series Delete a series or specific seasons series_id (int), delete_seasons (array, optional), delete_files (bool, default: false)
interactive_search Browse available releases series_id (int), season_number (int, optional), episode_number (int, optional)
download_release Download a specific release release_guid (string), series_id (int)
get_quality_profiles List available quality profiles None

Monitor Types

The monitor_type parameter supports these options:

  • all - Monitor all episodes
  • future - Monitor future episodes only
  • missing - Monitor missing episodes
  • existing - Monitor existing episodes
  • recent - Monitor recent episodes
  • first - Monitor first season only
  • latest - Monitor latest season only
  • none - Monitor no episodes
  • season_specific - Monitor specific seasons (requires monitor_seasons array)

Example Workflows

Adding a TV Series

  1. Search for series: "Search for Breaking Bad TV series"
  2. Add series: "Add Breaking Bad with HD-1080p quality, monitor all episodes"
  3. Add with specific seasons: "Add The Office with monitor_type: 'season_specific' and monitor_seasons: [1, 2, 3]"
  4. Check status: "Show me details for Breaking Bad"

Managing Your Collection

  1. List series: "Show me all my TV series"
  2. Update monitoring: "Change series ID 123 to monitor only seasons 2 and 4"
  3. Update quality and search: "Change series ID 123 to 4K quality and start searching for missing episodes"
  4. Browse releases: "Show me available releases for series ID 123 season 2"

Season-Specific Management

  1. Monitor specific seasons: "Update series ID 123 with monitor_type: 'season_specific', monitor_seasons: [1, 3, 5]"
  2. Delete specific seasons: "Delete seasons 2 and 4 from series ID 123 including files"
  3. Search specific episodes: "Show releases for series ID 123 season 3 episode 5"

Finding Downloads

  1. Get series details: "Show me the status of Game of Thrones"
  2. Interactive search: "What releases are available for The Walking Dead season 1?"
  3. Episode search: "Find releases for series ID 456 season 2 episode 10"

Requirements

  • Python 3.13+
  • Sonarr v3+ with API access
  • Network access to your Sonarr instance

Development

# Clone the repository
git clone https://github.com/MichaelReubenDev/sonarr-mcp.git
cd sonarr-mcp

# Install dependencies
uv sync

# Test with the MCP Inspector
task mcp_inspector

# Run with debug logging
uv run sonarr-mcp --url http://localhost:8989 --api-token YOUR_TOKEN --debug

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

Support


推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选