Sora MCP Server

Sora MCP Server

Integrates with OpenAI's Sora 2 API to generate, remix, and manage AI-generated videos from text prompts. Supports video creation, status monitoring, downloading, and remixing through natural language commands.

Category
访问服务器

README

Sora MCP Server

A Model Context Protocol (MCP) server that integrates with OpenAI's Sora 2 API for video generation and remixing.

Features

  • Create Videos: Generate videos from text prompts using Sora 2
  • Remix Videos: Create variations of existing videos with new prompts
  • Video Status: Check the status and progress of video generation jobs

Prerequisites

  • Node.js 18+
  • OpenAI API key with Sora access
  • An MCP-compatible client (Claude, Cursor, VS Code, etc.)

Installation

  1. Clone the repository:
git clone https://github.com/Doriandarko/sora-mcp
cd sora-mcp
  1. Install dependencies:
npm install
  1. Build the project:
npm run build
  1. Configure for Claude Desktop:
    • Copy claude_desktop_config.example.json to ~/Library/Application Support/Claude/claude_desktop_config.json
    • Update the args path to match your installation directory
    • Add your OpenAI API key to the OPENAI_API_KEY field
    • Optionally set DOWNLOAD_DIR to your preferred download folder

Server Architecture

This project includes two server implementations for different use cases:

📱 stdio-server.ts - For Claude Desktop

  • Transport: stdio (Standard Input/Output)
  • Use case: Local process communication
  • How it works: Claude Desktop spawns this as a child process
  • Benefits: Fast, secure, no network needed
  • Used by: Claude Desktop

🌐 server.ts - For Remote Access

  • Transport: HTTP/Streamable HTTP
  • Use case: Remote clients, web-based tools
  • How it works: Runs as HTTP server on port 3000
  • Benefits: Network accessible, multiple clients
  • Used by: MCP Inspector, VS Code, Cursor, browsers

Why two servers? Different MCP clients use different transports. This separation keeps the code clean and optimized for each transport type.

Usage

For Claude Desktop (stdio mode)

Claude Desktop will automatically start the server when configured. Just make sure:

  1. Your .env file has your OPENAI_API_KEY
  2. Restart Claude Desktop after updating the config

The config uses src/stdio-server.ts which communicates via stdio.

For HTTP Mode (MCP Inspector, web clients)

Run the server in development mode with auto-reload:

npm run dev

Or in production mode:

npm run build
npm start

Connecting to MCP Clients

Claude Desktop

The server is already configured!

Setup: The configuration is at: ~/Library/Application Support/Claude/claude_desktop_config.json

It uses the compiled server and passes your API key via environment variables:

{
  "mcpServers": {
    "sora-server": {
      "command": "node",
      "args": ["/ABSOLUTE/PATH/TO/sora-mcp/dist/stdio-server.js"],
      "env": {
        "OPENAI_API_KEY": "your-openai-api-key-here",
        "DOWNLOAD_DIR": "/Users/yourname/Downloads/sora"
      }
    }
  }
}

See claude_desktop_config.example.json for a complete example.

Environment Variables:

  • OPENAI_API_KEY (required) - Your OpenAI API key
  • DOWNLOAD_DIR (optional) - Custom download folder (defaults to ~/Downloads)

To use:

  1. Restart Claude Desktop (Cmd+Q then relaunch)
  2. The Sora tools will appear automatically!

MCP Inspector (for testing)

Test your server with the MCP Inspector:

npx @modelcontextprotocol/inspector

Then connect to: http://localhost:3000/mcp

Claude Code

claude mcp add --transport http sora-server http://localhost:3000/mcp

VS Code

code --add-mcp '{"name":"sora-server","type":"http","url":"http://localhost:3000/mcp"}'

Cursor

Add to your Cursor MCP settings with stdio transport (similar to Claude Desktop configuration above).

Available Tools

create-video

Generate a video from a text prompt.

Parameters:

  • prompt (required): Text description of the video to generate
  • model (optional): Model to use (default: "sora-2")
  • seconds (optional): Video duration in seconds (default: "4")
  • size (optional): Resolution as "widthxheight" (default: "720x1280")
  • input_reference (optional): Path to reference image/video

Example:

{
  "prompt": "A calico cat playing a piano on stage",
  "model": "sora-2",
  "seconds": "8",
  "size": "1024x1808"
}

get-video-status

Check the status and progress of a video generation job.

Parameters:

  • video_id (required): ID of the video to check

Example:

{
  "video_id": "video_123"
}

Returns: Video status including progress (0-100), status (queued/processing/completed), and completion timestamps.

list-videos

List all your video generation jobs with pagination.

Parameters:

  • limit (optional): Number of videos to retrieve (default: 20)
  • after (optional): Pagination cursor - get videos after this ID
  • order (optional): Sort order "asc" or "desc" (default: "desc")

Example:

{
  "limit": 10,
  "order": "desc"
}

download-video

Get a curl command to manually download a completed video.

Parameters:

  • video_id (required): ID of the video to download
  • variant (optional): Which format to download (defaults to MP4)

Example:

{
  "video_id": "video_123"
}

Returns: Ready-to-use curl command with authentication for downloading the video.

save-video ⭐ (Auto-Download)

Automatically download and save a completed video to your computer.

Parameters:

  • video_id (required): ID of the video to save
  • output_path (optional): Directory to save to (defaults to ~/Downloads)
  • filename (optional): Custom filename (defaults to video_id.mp4)

Example:

{
  "video_id": "video_123",
  "filename": "my-cat-video.mp4"
}

Returns: File path where video was saved. No manual commands needed!

remix-video

Create a remix of an existing video with a new prompt.

Parameters:

  • video_id (required): ID of the completed video to remix
  • prompt (required): New text prompt for the remix

Example:

{
  "video_id": "video_123",
  "prompt": "Extend the scene with the cat taking a bow to the cheering audience"
}

delete-video

Delete a video job and its assets.

Parameters:

  • video_id (required): ID of the video to delete

Example:

{
  "video_id": "video_123"
}

Typical Workflow

  1. Create a video → Get back a video_id

    "Create a video of a sunset over mountains"
    
  2. Check status → Monitor progress

    "Check the status of video video_123"
    
  3. Save when ready → Auto-download the video file

    "Save video video_123"
    

    Claude will automatically download it to your Downloads folder!

  4. Clean up → Delete old videos

    "Delete video video_123"
    

API Response Format

Video Job Response

{
  "id": "video_123",
  "object": "video",
  "model": "sora-2",
  "status": "queued",
  "progress": 0,
  "created_at": 1712697600,
  "size": "1024x1808",
  "seconds": "8",
  "quality": "standard"
}

Remix Response

{
  "id": "video_456",
  "object": "video",
  "model": "sora-2",
  "status": "queued",
  "progress": 0,
  "created_at": 1712698600,
  "size": "720x1280",
  "seconds": "8",
  "remixed_from_video_id": "video_123"
}

Error Handling

The server includes comprehensive error handling:

  • Missing API key validation on startup
  • API error responses with detailed messages
  • Graceful error returns in tool responses

Development

Project Structure

sora-mcp/
├── src/
│   └── server.ts       # Main server implementation
├── dist/               # Compiled JavaScript (generated)
├── package.json        # Dependencies and scripts
├── tsconfig.json       # TypeScript configuration
├── .env               # Environment variables (not in git)
└── README.md          # This file

Scripts

  • npm run dev - Run in development mode with tsx
  • npm run build - Compile TypeScript to JavaScript
  • npm start - Run compiled JavaScript

Environment Variables

  • OPENAI_API_KEY (required) - Your OpenAI API key
  • PORT (optional) - Server port (default: 3000)

License

MIT

Resources

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选