Spec-Driven Development MCP Server

Spec-Driven Development MCP Server

Facilitates spec-driven development workflows by providing structured prompts for generating requirements in EARS format, design documents, and implementation code following a systematic approach.

Category
访问服务器

README

Spec-Driven Development MCP Server

Install in VS Code

Model Context Protocol (MCP) server that facilitates spec-driven development workflows by providing structured prompts for generating requirements, design documents, and code following a systematic approach.

🎯 Purpose

This MCP server enables developers to follow a structured spec-driven development approach by providing prompts that guide you through:

  1. Requirements Generation - Create detailed requirements documents using the EARS (Easy Approach to Requirements Syntax) format
  2. Design Generation - Generate design documents based on requirements
  3. Code Generation - Generate implementation code based on design documents

✨ Features

  • Structured Workflow: Follows a clear progression from requirementsdesigncode
  • EARS Format Support: Uses industry-standard EARS format for requirements documentation
  • MCP Protocol: Integrates seamlessly with MCP-compatible tools and environments

🚀 Quick Start

Prerequisites

  • Node.js 20+

Installation

Install the MCP server in VS Code using below buttons:

Install in VS Code Install in VS Code Insiders

Alternatively, you can add configuration in mcp.json:

{
    "servers": {
        "spec-driven": {
            "command": "npx",
            "args": [
                "-y",
                "mcp-server-spec-driven-development@latest"
            ]
        }
    }
}

📋 Available Prompts

1. Generate Requirements Document

  • Name: generate-requirements
  • Description: Generate requirements.md using EARS format
  • Input: High-level requirements of the application. Example: 'A Vue.js todo application with task creation, completion tracking, and local storage persistence'
  • Output: Structured requirements document in specs/requirements.md

2. Generate Design from Requirements

  • Name: generate-design-from-requirements
  • Description: Generate design.md from requirements.md
  • Input: Reads from specs/requirements.md
  • Output: Design document in specs/design.md

3. Generate Code from Design

  • Name: generate-code-from-design
  • Description: Generate code from design.md
  • Input: Reads from specs/design.md
  • Output: Implementation code in the root folder

📖 Workflow Example

  1. Start with Requirements: Use the generate-requirements prompt with your initial requirements text
  2. Create Design: Use generate-design-from-requirements to create a design document based on your requirements
  3. Generate Code: Use generate-code-from-design to generate implementation code from your design

This creates a traceable path from requirements through design to implementation, ensuring consistency and completeness in your development process.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选