Spec MCP Server
Streamlines development workflows through AI-assisted codebase analysis, comprehensive planning, task breakdown with dependencies, and automated implementation verification. Enables systematic approach to complex development tasks like framework migrations and feature implementation.
README
Spec MCP Server
A Model Context Protocol server designed to streamline development workflows through AI-assisted analysis, planning, and verification.
Features
- Tech Steering: Automated codebase analysis and documentation
- Plan Generation: Comprehensive requirement and design documentation
- Task Breakdown: Detailed task generation with dependencies
- Implementation Verification: Automated code review and compliance checking
Installation
- Configure your AI client (Claude Desktop, Cursor, etc.)
- Add the server to your MCP configuration
- Start using the tools through your AI interface
Configuration Examples
Visual Studio Code
Add to your VS Code MCP configuration file:
- Regular VS Code:
~/Library/Application Support/Code/User/mcp.json - VS Code Insiders:
~/Library/Application Support/Code - Insiders/User/mcp.json
{
"servers": {
"spec": {
"command": "npx",
"args": [
"-y",
"spec-mcp@latest"
]
}
}
}
Zed
- Open Zed > Settings > Open Settings (it will open
~/. config/zed/settings.json) - Add a context_servers section to your configuration:
{
"context_servers": {
"spec": {
"source": "custom",
"command": "npx",
"args": ["-y", "spec-mcp@latest"],
"env": {}
}
}
}
Claude Code (CLI)
For Claude Code CLI, use the following command:
claude mcp add spec-mcp --scope user -- npx -y spec-mcp@latest
Claude Desktop
Add to ~/Library/Application Support/Claude/claude_desktop_config.json:
{
"mcpServers": {
"spec": {
"command": "npx",
"args": [
"-y",
"spec-mcp@latest"
]
}
}
}
Workflow
The Spec MCP workflow guides you through complex development tasks like framework migrations, feature implementation, or refactoring. Follow these steps:
1. Analyze Codebase (One-time Setup)
Analyze the existing codebase to create steering documents that guide all future operations.
Prompt: Use Spec MCP to analyze the codebase
This creates three steering documents in .spec/steering/:
product.md- Product overview and business contexttech.md- Technology stack and development guidelinesstructure.md- Project organization and patterns
Note: You can recreate these documents anytime with force_regenerate=true
2. Search Documentation
Search documentation for relevant information about frameworks, APIs, or migration guides using e.g. Context7 MCP.
Prompt: Search docs with Context7 MCP for [topic/framework/library]
3. Generate Plan
Create a comprehensive plan based on your requirements and the current codebase context.
Prompt: Create a plan with Spec MCP to [describe your objective]
This generates .spec/specs/plan.md with requirements, design, and traceability.
4. Generate Tasks
Break down the plan into actionable, testable tasks with dependencies.
Prompt: Generate tasks from the plan using Spec MCP
This creates .spec/specs/tasks.md with detailed implementation tasks.
5. Implement Tasks
Execute tasks systematically using the task orchestrator, which handles dependencies and parallelization.
Prompt: Implement tasks from tasks.md using Spec MCP task orchestrator
The orchestrator will:
- Identify ready tasks based on dependencies
- Execute tasks through task-executor
- Verify completion with task-checker
- Report progress and next available tasks
Available Tools
generate-codebase-analysis
Analyzes codebase and generates three foundational analysis documents: product.md, tech.md, and structure.md in .spec/steering/ directory. These documents provide comprehensive analysis of the product features, technology stack, and project structure.
generate-plan
Creates comprehensive plans from user requirements, combining requirements analysis with technical design.
generate-tasks
Breaks down plan.md into discrete, implementable tasks with requirement traceability, dependencies, and comprehensive acceptance criteria following task structure. Each task links back to specific requirements and includes detailed implementation guidance. Uses current directory if project_path not specified.
task-orchestrator
Analyzes tasks.md to identify dependencies, parallelization opportunities, and coordinate task execution. Returns a structured execution plan for deploying task executors efficiently.
task-executor
Executes a specific task from tasks.md by providing detailed implementation guidance, requirements, acceptance criteria, and code patterns. This tool focuses on implementing one task thoroughly.
verify-implementation
READ-ONLY verification tool that checks completed task implementation against acceptance criteria, runs EXISTING project tests, and reports quality status. This tool ONLY verifies and reports - it does NOT create or modify any files, tests, or code.
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。