Specbridge

Specbridge

An MCP server that automatically converts OpenAPI specifications into MCP tools by scanning a folder for spec files, requiring no configuration files or separate servers.

Category
访问服务器

README

<h1 align="center">SpecBridge <p> <a href="https://glama.ai/mcp/servers/@TBosak/specbridge"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@TBosak/specbridge/badge" alt="Specbridge MCP server" /> </a> </p> </h1>

An MCP server that turns OpenAPI specifications into MCP tools. Scan a folder for OpenAPI spec files and automatically generate corresponding tools. No configuration files, no separate servers - just drop specs in a folder and get tools.

Built with FastMCP for TypeScript.

✨ Features

  • 🎯 Zero Configuration: Filesystem is the interface - just drop OpenAPI specs in a folder
  • 🔐 Auto Authentication: Simple .env file with {API_NAME}_API_KEY pattern
  • 🏷️ Namespace Isolation: Multiple APIs coexist cleanly (e.g., petstore_getPet, github_getUser)
  • 📝 Full OpenAPI Support: Handles parameters, request bodies, authentication, and responses
  • 🚀 Multiple Transports: Support for stdio and HTTP streaming
  • 🔍 Built-in Debugging: List command to see loaded specs and tools

🚀 Quick Start

1️⃣ Install

npm install -g specbridge

2️⃣ Create a specs folder

mkdir ~/mcp-apis

3️⃣ Add OpenAPI specs

Drop any .json, .yaml, or .yml OpenAPI specification files into your specs folder:

# Example: Download the Petstore spec
curl -o ~/mcp-apis/petstore.json https://petstore3.swagger.io/api/v3/openapi.json

4️⃣ Configure authentication (optional)

Create a .env file in your specs folder:

# ~/mcp-apis/.env
PETSTORE_API_KEY=your_api_key_here
GITHUB_TOKEN=ghp_your_github_token
OPENAI_API_KEY=sk-your_openai_key

5️⃣ Add to MCP client configuration

For Claude Desktop or Cursor, add to your MCP configuration:

{
  "mcpServers": {
    "specbridge": {
      "command": "specbridge",
      "args": ["--specs", "/path/to/your/specs/folder"]
    }
  }
}

6️⃣ Restart your MCP client

That's it! Your OpenAPI specs are now available as MCP tools. ✅

💻 CLI Usage

🚀 Start the server

# Default: stdio transport, current directory
specbridge

# Custom specs folder
specbridge --specs ~/my-api-specs

# HTTP transport mode
specbridge --transport httpStream --port 8080

📋 List loaded specs and tools

# List all loaded specifications and their tools
specbridge list

# List specs from custom folder
specbridge list --specs ~/my-api-specs

🔑 Authentication Patterns

The server automatically detects authentication from environment variables using these patterns:

Pattern Auth Type Usage
{API_NAME}_API_KEY 🗝️ API Key X-API-Key header
{API_NAME}_TOKEN 🎫 Bearer Token Authorization: Bearer {token}
{API_NAME}_BEARER_TOKEN 🎫 Bearer Token Authorization: Bearer {token}
{API_NAME}_USERNAME + {API_NAME}_PASSWORD 👤 Basic Auth Authorization: Basic {base64}

The {API_NAME} is derived from the filename of your OpenAPI spec:

  • petstore.jsonPETSTORE_API_KEY
  • github-api.yamlGITHUB_TOKEN
  • my_custom_api.ymlMYCUSTOMAPI_API_KEY

🏷️ Tool Naming

Tools are automatically named using this pattern:

  • With operationId: {api_name}_{operationId}
  • Without operationId: {api_name}_{method}_{path_segments}

Examples:

  • petstore_getPetById (from operationId)
  • github_get_user_repos (generated from GET /user/repos)

📁 File Structure

your-project/
├── api-specs/           # Your OpenAPI specs folder
│   ├── .env            # Authentication credentials
│   ├── petstore.json   # OpenAPI spec files
│   ├── github.yaml     # 
│   └── custom-api.yml  # 
└── mcp-config.json     # MCP client configuration

📄 Example OpenAPI Spec

Here's a minimal example that creates two tools:

# ~/mcp-apis/example.yaml
openapi: 3.0.0
info:
  title: Example API
  version: 1.0.0
servers:
  - url: https://api.example.com
paths:
  /users/{id}:
    get:
      operationId: getUser
      summary: Get user by ID
      parameters:
        - name: id
          in: path
          required: true
          schema:
            type: string
      responses:
        '200':
          description: User found
  /users:
    post:
      operationId: createUser
      summary: Create a new user
      requestBody:
        required: true
        content:
          application/json:
            schema:
              type: object
              properties:
                name:
                  type: string
                email:
                  type: string
      responses:
        '201':
          description: User created

This creates tools named:

  • example_getUser
  • example_createUser

🔧 Troubleshooting

❌ No tools appearing?

  1. Check that your OpenAPI specs are valid:

    specbridge list --specs /path/to/specs
    
  2. Ensure files have correct extensions (.json, .yaml, .yml)

  3. Check the server logs for parsing errors

⚠️ Note: Specbridge works best when you use absolute paths (with no spaces) for the --specs argument and other file paths. Relative paths or paths containing spaces may cause issues on some platforms or with some MCP clients.

🔐 Authentication not working?

  1. Verify your .env file is in the specs directory
  2. Check the naming pattern matches your spec filename
  3. Use the list command to verify auth configuration:
    specbridge list
    

🔄 Tools not updating after spec changes?

  1. Restart the MCP server to reload the specs
  2. Check file permissions
  3. Restart the MCP client if needed

🛠️ Development

# Clone and install
git clone https://github.com/TBosak/specbridge.git
cd specbridge
npm install

# Build
npm run build

# Test locally
npm run dev -- --specs ./examples

🤝 Contributing

Contributions are welcome! Please feel free to submit issues and pull requests.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选