Specbridge
An MCP server that automatically converts OpenAPI specifications into MCP tools by scanning a folder for spec files, requiring no configuration files or separate servers.
README
<h1 align="center">SpecBridge <p> <a href="https://glama.ai/mcp/servers/@TBosak/specbridge"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@TBosak/specbridge/badge" alt="Specbridge MCP server" /> </a> </p> </h1>
An MCP server that turns OpenAPI specifications into MCP tools. Scan a folder for OpenAPI spec files and automatically generate corresponding tools. No configuration files, no separate servers - just drop specs in a folder and get tools.
Built with FastMCP for TypeScript.
✨ Features
- 🎯 Zero Configuration: Filesystem is the interface - just drop OpenAPI specs in a folder
- 🔐 Auto Authentication: Simple
.envfile with{API_NAME}_API_KEYpattern - 🏷️ Namespace Isolation: Multiple APIs coexist cleanly (e.g.,
petstore_getPet,github_getUser) - 📝 Full OpenAPI Support: Handles parameters, request bodies, authentication, and responses
- 🚀 Multiple Transports: Support for stdio and HTTP streaming
- 🔍 Built-in Debugging: List command to see loaded specs and tools
🚀 Quick Start
1️⃣ Install
npm install -g specbridge
2️⃣ Create a specs folder
mkdir ~/mcp-apis
3️⃣ Add OpenAPI specs
Drop any .json, .yaml, or .yml OpenAPI specification files into your specs folder:
# Example: Download the Petstore spec
curl -o ~/mcp-apis/petstore.json https://petstore3.swagger.io/api/v3/openapi.json
4️⃣ Configure authentication (optional)
Create a .env file in your specs folder:
# ~/mcp-apis/.env
PETSTORE_API_KEY=your_api_key_here
GITHUB_TOKEN=ghp_your_github_token
OPENAI_API_KEY=sk-your_openai_key
5️⃣ Add to MCP client configuration
For Claude Desktop or Cursor, add to your MCP configuration:
{
"mcpServers": {
"specbridge": {
"command": "specbridge",
"args": ["--specs", "/path/to/your/specs/folder"]
}
}
}
6️⃣ Restart your MCP client
That's it! Your OpenAPI specs are now available as MCP tools. ✅
💻 CLI Usage
🚀 Start the server
# Default: stdio transport, current directory
specbridge
# Custom specs folder
specbridge --specs ~/my-api-specs
# HTTP transport mode
specbridge --transport httpStream --port 8080
📋 List loaded specs and tools
# List all loaded specifications and their tools
specbridge list
# List specs from custom folder
specbridge list --specs ~/my-api-specs
🔑 Authentication Patterns
The server automatically detects authentication from environment variables using these patterns:
| Pattern | Auth Type | Usage |
|---|---|---|
{API_NAME}_API_KEY |
🗝️ API Key | X-API-Key header |
{API_NAME}_TOKEN |
🎫 Bearer Token | Authorization: Bearer {token} |
{API_NAME}_BEARER_TOKEN |
🎫 Bearer Token | Authorization: Bearer {token} |
{API_NAME}_USERNAME + {API_NAME}_PASSWORD |
👤 Basic Auth | Authorization: Basic {base64} |
The {API_NAME} is derived from the filename of your OpenAPI spec:
petstore.json→PETSTORE_API_KEYgithub-api.yaml→GITHUB_TOKENmy_custom_api.yml→MYCUSTOMAPI_API_KEY
🏷️ Tool Naming
Tools are automatically named using this pattern:
- With operationId:
{api_name}_{operationId} - Without operationId:
{api_name}_{method}_{path_segments}
Examples:
petstore_getPetById(from operationId)github_get_user_repos(generated fromGET /user/repos)
📁 File Structure
your-project/
├── api-specs/ # Your OpenAPI specs folder
│ ├── .env # Authentication credentials
│ ├── petstore.json # OpenAPI spec files
│ ├── github.yaml #
│ └── custom-api.yml #
└── mcp-config.json # MCP client configuration
📄 Example OpenAPI Spec
Here's a minimal example that creates two tools:
# ~/mcp-apis/example.yaml
openapi: 3.0.0
info:
title: Example API
version: 1.0.0
servers:
- url: https://api.example.com
paths:
/users/{id}:
get:
operationId: getUser
summary: Get user by ID
parameters:
- name: id
in: path
required: true
schema:
type: string
responses:
'200':
description: User found
/users:
post:
operationId: createUser
summary: Create a new user
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
name:
type: string
email:
type: string
responses:
'201':
description: User created
This creates tools named:
example_getUserexample_createUser
🔧 Troubleshooting
❌ No tools appearing?
-
Check that your OpenAPI specs are valid:
specbridge list --specs /path/to/specs -
Ensure files have correct extensions (
.json,.yaml,.yml) -
Check the server logs for parsing errors
⚠️ Note: Specbridge works best when you use absolute paths (with no spaces) for the
--specsargument and other file paths. Relative paths or paths containing spaces may cause issues on some platforms or with some MCP clients.
🔐 Authentication not working?
- Verify your
.envfile is in the specs directory - Check the naming pattern matches your spec filename
- Use the list command to verify auth configuration:
specbridge list
🔄 Tools not updating after spec changes?
- Restart the MCP server to reload the specs
- Check file permissions
- Restart the MCP client if needed
🛠️ Development
# Clone and install
git clone https://github.com/TBosak/specbridge.git
cd specbridge
npm install
# Build
npm run build
# Test locally
npm run dev -- --specs ./examples
🤝 Contributing
Contributions are welcome! Please feel free to submit issues and pull requests.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。