Spider MCP Server
Enables crawling and extracting clean content from documentation websites with optional LLM-powered analysis for intelligent summaries, code example extraction, and content classification.
README
Spider MCP Server
An MCP server for crawling and spidering documentation websites, extracting clean text content, and using LLM-powered analysis to provide intelligent summaries and context through the Model Context Protocol.
Features
- Crawl entire documentation websites with configurable depth limits
- Extract clean text content from HTML pages using multiple extraction methods
- Intelligent content parsing that removes navigation, ads, and other noise
- LLM-powered content analysis using Anthropic Claude (Haiku/Sonnet)
- Automatic content summarization and key point extraction
- Intelligent code example extraction and categorization
- Code example detection across multiple programming languages
- Intelligent link discovery and relevance ranking
- Content type classification (tutorial, reference, API docs, etc.)
- Respect robots.txt and implement proper crawling etiquette
- File-based caching with TTL and compression
- Search through cached documentation content with LLM enhancement
- Concurrent crawling with rate limiting
- Support for various documentation layouts and formats
Installation
git clone <repository-url>
cd spider-mcp
bun install
cp .env.example .env
Usage
As MCP Server
Run the server to expose MCP tools:
bun run dev
MCP Client Integration
This server implements the Model Context Protocol (MCP) specification and communicates via stdio transport. MCP enables AI assistants to securely access external tools and data sources. To use this server, you need an MCP-compatible client like Claude Desktop, or you can integrate it programmatically using the MCP SDK.
Claude Desktop Integration
Add to your Claude Desktop MCP configuration:
{
"mcpServers": {
"spider-mcp": {
"command": "bun",
"args": ["run", "/path/to/spider-mcp/src/index.ts"],
"env": {
"ANTHROPIC_API_KEY": "your_api_key_here"
}
}
}
}
Programmatic Usage Examples
// Example using @modelcontextprotocol/sdk
import { Client } from '@modelcontextprotocol/sdk/client/index.js';
import { StdioClientTransport } from '@modelcontextprotocol/sdk/client/stdio.js';
const client = new Client({
name: "spider-client",
version: "1.0.0"
}, {
capabilities: {}
});
// Connect to the spider MCP server
const transport = new StdioClientTransport({
command: "bun",
args: ["run", "/path/to/spider-mcp/src/index.ts"]
});
await client.connect(transport);
// Extract code examples from documentation
const result = await client.request({
method: "tools/call",
params: {
name: "spider_docs",
arguments: {
url: "https://docs.anthropic.com/en/docs/quickstart",
enable_llm_analysis: true,
llm_analysis_type: "code_examples",
max_depth: 2
}
}
});
Available Tools
spider_docs
Crawl a documentation website and cache the content with optional LLM analysis.
Parameters:
url(required): Base URL of the documentation sitemax_depth(optional): Maximum crawl depth (default: 3)include_patterns(optional): URL patterns to includeexclude_patterns(optional): URL patterns to excludeenable_llm_analysis(optional): Enable LLM-powered content analysisllm_analysis_type(optional): Type of analysis:full- Complete analysis with summary, key points, links, and code examplessummary- Content summarization onlylinks- Link analysis and relevance rankingclassification- Content type classificationcode_examples- Extract and categorize code examples only
Example with code extraction:
{
"url": "https://docs.example.com/api",
"max_depth": 2,
"enable_llm_analysis": true,
"llm_analysis_type": "code_examples"
}
get_page
Retrieve a specific page from the cache.
Parameters:
url(required): URL of the page to retrieve
search_docs
Search through cached documentation content.
Parameters:
query(required): Search querylimit(optional): Maximum results to return (default: 10)
list_pages
List all cached pages with optional filtering and sorting.
Parameters:
filter(optional): Filter pages by URL patternsort(optional): Sort field (url, title, timestamp)order(optional): Sort order (asc, desc)
clear_cache
Clear cached pages matching a pattern.
Parameters:
url_pattern(optional): Pattern to match for clearing
analyze_content
Perform LLM-powered analysis on a specific cached page.
Parameters:
url(required): URL of the page to analyzeanalysis_type(optional): Same options asspider_docsabove
Example for code extraction:
{
"url": "https://docs.example.com/api/users",
"analysis_type": "code_examples"
}
get_summary
Get an intelligent summary of a cached page.
Parameters:
url(required): URL of the page to summarizesummary_length(optional): Length of summary (short, medium, long)focus_areas(optional): Specific areas to focus on in the summary
Configuration
Configuration can be provided through:
- Environment variables (see
.env.example) - JSON configuration files in
config/directory - Runtime parameters passed to tools
LLM Integration
To enable LLM-powered content analysis, set your Anthropic API key:
export ANTHROPIC_API_KEY=your_api_key_here
The server will automatically detect the API key and enable LLM features. Without an API key, the server operates in basic mode with programmatic content extraction only.
Example Configuration
{
"maxDepth": 3,
"maxPages": 100,
"concurrency": 5,
"userAgent": "SpiderMCP/1.0 Documentation Crawler",
"timeout": 10000,
"retryAttempts": 3,
"cacheTTL": 86400000,
"respectRobotsTxt": true,
"includePatterns": ["/docs/*", "/api/*"],
"excludePatterns": ["/blog/*", "*.pdf"]
}
Development
bun test
bun run typecheck
bun run build
Testing the Spider
Use the included test script to try out the functionality locally:
# Test with code example extraction on a documentation site
bun run test-spider.ts https://docs.anthropic.com/en/docs/quickstart
# Test with a specific site focusing on code examples
ANTHROPIC_API_KEY=your_key bun run test-spider.ts https://docs.example.com
# Test code-only extraction
bun run test-spider.ts https://docs.python.org/3/tutorial/
The test script demonstrates the spider functionality outside of MCP and will show you:
- Crawled pages with metadata
- Extracted code examples with languages and categories
- LLM analysis results including summaries and classifications
- Cache statistics and performance metrics
Note: The test script uses the spider functionality directly, not through MCP protocol.
Architecture
src/spider/- Core crawling and parsing logicsrc/mcp/- MCP server implementation and tool handlerssrc/extractors/- Content extraction strategiessrc/llm/- LLM integration and content analysissrc/utils/- Utility functions and configurationcache/- File system cache storageconfig/- Configuration files
Extraction Methods
The server supports multiple content extraction methods:
- Readability - Mozilla Readability algorithm for article extraction
- Cheerio - Custom CSS selector-based extraction
- Markdown - HTML to Markdown conversion with Turndown
- LLM Analysis - Anthropic Claude for intelligent content understanding and code extraction
Code Example Extraction
The LLM analysis can intelligently extract and categorize code examples from documentation:
- Language Detection: Automatically detects programming languages (JavaScript, Python, bash, JSON, etc.)
- Code Categories:
api_call- API requests, SDK calls, HTTP requestsconfiguration- Config files, settings, environment setupimplementation- Complete functions, classes, modulesusage_example- How to use a feature or librarysnippet- Small code fragments or utilitiescomplete_example- Full working examples or applications
- Format Preservation: Maintains exact formatting, indentation, and syntax
- Context Awareness: Provides meaningful descriptions for each code example
Example Output Format
When using code example extraction, the output includes structured code examples:
{
"codeExamples": [
{
"language": "javascript",
"code": "const response = await fetch('/api/users', {\n method: 'GET',\n headers: {\n 'Authorization': 'Bearer ' + apiKey\n }\n});",
"description": "Fetch users from API with authentication",
"category": "api_call"
},
{
"language": "python",
"code": "import requests\n\nresponse = requests.get('/api/users', headers={\n 'Authorization': f'Bearer {api_key}'\n})",
"description": "Python example for API authentication",
"category": "api_call"
},
{
"language": "json",
"code": "{\n \"database\": {\n \"host\": \"localhost\",\n \"port\": 5432\n }\n}",
"description": "Database configuration file",
"category": "configuration"
}
]
}
Caching
- Two-tier caching: in-memory + file system
- Configurable TTL and cache size limits
- Automatic cleanup of expired entries
- Domain-based cache organization
Robots.txt Compliance
- Fetches and parses robots.txt automatically
- Respects crawl-delay directives
- Honors disallow/allow rules
- Discovers sitemaps
Rate Limiting
- Configurable concurrent request limits
- Exponential backoff for failed requests
- Per-domain crawl delays
- Timeout handling
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。