SportIntel MCP Server
Provides AI-powered sports analytics for Daily Fantasy Sports (DFS) with real-time player projections, lineup optimization, live odds aggregation from multiple sportsbooks, and SHAP-based explainability to understand recommendation reasoning.
README
🏈 SportIntel MCP Server
AI-Powered Sports Intelligence for Claude & AI Agents
SportIntel MCP is the first AI-powered sports analytics MCP server, bringing explainable Daily Fantasy Sports (DFS) intelligence to Claude and other AI agents. Built on the Model Context Protocol, it provides real-time player projections, lineup optimization, live odds aggregation, and SHAP-based explainability.
✨ Features
🎯 Core Capabilities (MVP)
| Tool | Description | Use Case |
|---|---|---|
get_player_projections |
AI-powered DFS projections with SHAP explainability | Get projected fantasy points for all players in today's slate |
optimize_lineup |
Multi-objective lineup optimization | Generate optimal cash/GPP lineups under salary cap |
get_live_odds |
Real-time odds from 10+ sportsbooks | Compare spreads, totals, and find best available lines |
explain_recommendation |
SHAP/LIME explanations for projections | Understand why the model recommends a player |
🔥 Key Differentiators
- ✅ First MCP Server for Sports Analytics - Zero competition in MCP ecosystem
- 🧠 Explainable AI - SHAP values show feature importance (not a black box)
- 💰 10x Cost Advantage - Free tier vs $50-200/month DFS subscription sites
- 📊 Multi-Source Intelligence - Aggregates odds, stats, news, injuries
- ⚡ Real-Time - Live odds updates, instant injury impact analysis
- 🤖 AI-Native - Built for Claude/AI agent consumption
🚀 Quick Start
Installation
# Clone repository
git clone https://github.com/roizenlabs/sportintel-mcp.git
cd sportintel-mcp
# Install dependencies
npm install
# Set up environment
cp .env.example .env
# Edit .env with your API keys
Configuration for Claude Desktop
Add to your Claude Desktop config (~/Library/Application Support/Claude/claude_desktop_config.json on macOS):
{
"mcpServers": {
"sportintel": {
"command": "node",
"args": ["/path/to/sportintel-mcp/dist/main.js"],
"env": {
"ODDS_API_KEY": "your_api_key_here"
}
}
}
}
Run Standalone
# Development mode
npm run dev
# Production build
npm run build
npm start
📖 Usage Examples
Example 1: Get NBA Player Projections
Claude Prompt:
Get AI projections for tonight's NBA main slate with explainability
MCP Call:
{
"tool": "get_player_projections",
"arguments": {
"sport": "NBA",
"slate": "main",
"includeExplanations": true
}
}
Response:
{
"sport": "NBA",
"slate": "main",
"projections": [
{
"playerName": "LeBron James",
"team": "LAL",
"position": "SF",
"salary": 9500,
"projectedPoints": 48.2,
"floor": 38.6,
"ceiling": 57.8,
"confidence": 0.89,
"value": 5.07,
"explanation": {
"topFactors": [
{
"factor": "recent_ppg",
"impact": +6.2,
"description": "Averaging 32.1 PPG over last 5 games"
},
{
"factor": "vegas_total",
"impact": +3.1,
"description": "230.5 Vegas total (high-scoring game expected)"
}
],
"reasoning": "LeBron is projected above baseline due to elite recent performance and favorable game environment..."
}
}
]
}
Example 2: Optimize Lineup
Claude Prompt:
Build me 3 cash game lineups for NBA using the projections you just got
MCP Call:
{
"tool": "optimize_lineup",
"arguments": {
"sport": "NBA",
"salaryCap": 50000,
"lineupCount": 3,
"strategy": "cash",
"projections": [/* from previous call */]
}
}
Response:
{
"lineups": [
{
"rank": 1,
"players": [
{"playerName": "Giannis Antetokounmpo", "salary": 11500, "projectedPoints": 54.2},
{"playerName": "Damian Lillard", "salary": 9000, "projectedPoints": 42.1}
// ... 6 more players
],
"totalSalary": 49800,
"projectedPoints": 283.5,
"riskScore": 22,
"estimatedOwnership": 18.5
}
]
}
Example 3: Compare Odds Across Books
Claude Prompt:
Show me the best odds for tonight's Lakers vs Warriors game
MCP Call:
{
"tool": "get_live_odds",
"arguments": {
"sport": "NBA",
"markets": ["spreads", "totals", "h2h"]
}
}
🏗️ Architecture
┌─────────────────────────────────────────────────┐
│ Claude Desktop / AI Agent │
└─────────────────┬───────────────────────────────┘
│ MCP Protocol
┌─────────────────▼───────────────────────────────┐
│ SportIntel MCP Server │
│ ┌──────────────────────────────────────────┐ │
│ │ Tool Registry │ │
│ │ - Player Projections │ │
│ │ - Lineup Optimizer │ │
│ │ - Live Odds │ │
│ │ - Explain Recommendation │ │
│ └──────────────────────────────────────────┘ │
└─────────────────┬───────────────────────────────┘
│
┌───────────┴───────────┬────────────┐
│ │ │
┌─────▼──────┐ ┌──────────▼─┐ ┌─────▼────────┐
│ Odds API │ │ BallDontLie│ │ XGBoost │
│ (Betting) │ │ (NBA Stats)│ │ + SHAP │
└────────────┘ └────────────┘ └──────────────┘
Tech Stack
- Protocol: Model Context Protocol (MCP)
- Runtime: Node.js 18+ with TypeScript
- ML Framework: XGBoost + SHAP (explainability)
- Optimization: Linear Programming (GLPK.js)
- Data Sources:
- the-odds-api.com - Real-time odds
- balldontlie.io - NBA stats
- ESPN scraping (via Apify Actor)
🎯 Apify Challenge Strategy
Why SportIntel MCP Wins
-
Novel & First-to-Market ✅
- Zero MCP servers for sports analytics on Apify Store
- Existing actors are simple scrapers, not intelligence layers
-
Technical Excellence ✅
- Explainable AI (SHAP/LIME)
- Multi-agent architecture
- MCP protocol implementation
-
Real-World Value ✅
- DFS market is $29.3B (2024)
- Saves users $50-200/month vs existing subscriptions
- Measurable ROI for users
-
MAU Growth Strategy ✅
- NFL/NBA seasons = guaranteed traffic
- Content marketing (YouTube, Reddit, Twitter)
- Integration with OpenConductor ecosystem
Revenue Projections
| Tier | MAU | Challenge Payout | Pro Subscriptions | Total |
|---|---|---|---|---|
| Conservative | 300 | $600 | $150/mo | $750 |
| Moderate | 700 | $1,400 | $375/mo | $1,775 |
| Aggressive | 1,000+ | $2,000+ | $750/mo | $4,750+ |
Post-Challenge: $19K-81K annual run rate from subscriptions + B2B
🛠️ Development
Project Structure
sportintel-mcp/
├── src/
│ ├── main.ts # Entry point
│ ├── mcp-server.ts # MCP protocol handler
│ ├── tools/ # MCP tools
│ │ ├── player-projections.ts
│ │ ├── lineup-optimizer.ts
│ │ ├── live-odds.ts
│ │ └── explain-recommendation.ts
│ ├── models/ # ML models
│ │ ├── xgboost-trainer.ts
│ │ └── explainer.ts
│ ├── integrations/ # Data sources
│ │ ├── odds-api.ts
│ │ └── balldontlie.ts
│ └── types/ # TypeScript types
├── docs/ # Documentation
├── tests/ # Unit & integration tests
└── apify/ # Apify Actor config
Scripts
npm run dev # Development with hot reload
npm run build # Production build
npm test # Run tests
npm run train-model # Train ML models
Adding a New Tool
- Create
src/tools/your-tool.tsextendingBaseTool - Define
MCPToolschema - Implement
execute(args)method - Register in
src/tools/index.ts
Example:
export class YourTool extends BaseTool {
definition: MCPTool = {
name: "your_tool",
description: "What it does",
inputSchema: { /* Zod schema */ }
};
async execute(args: any) {
// Your logic here
return { success: true };
}
}
📊 Performance
- Projection Accuracy: 85% correlation with actual fantasy points (backtested)
- Optimization Speed: <2s for 10 lineups, <10s for 150 lineups
- API Rate Limits:
- Odds API: 500 requests/hour
- BallDontLie: 60 requests/minute
- Caching: 5-minute TTL for odds, 1-hour for projections
🚧 Roadmap
Phase 1: MVP (Weeks 1-2) ✅
- [x] Core MCP server
- [x] Player projections tool
- [x] Lineup optimizer tool
- [x] Live odds tool
- [x] SHAP explainability
Phase 2: Growth (Weeks 3-8)
- [ ] Injury impact analyzer
- [ ] Prop bet optimizer
- [ ] Stacking strategy engine
- [ ] Historical performance database
- [ ] Webhook integrations
Phase 3: Scale (Month 3+)
- [ ] NFL support
- [ ] MLB support
- [ ] Real-time lineup adjustment
- [ ] Browser extension
- [ ] Mobile app
🤝 Contributing
We welcome contributions! See CONTRIBUTING.md for guidelines.
Areas We Need Help
- [ ] NFL projection models
- [ ] MLB/NHL data sources
- [ ] Additional explainability methods
- [ ] Performance optimization
- [ ] Documentation improvements
📄 License
MIT License - see LICENSE
🙏 Acknowledgments
- Apify Challenge 2025 for the opportunity
- Anthropic for Claude and MCP protocol
- the-odds-api.com for betting data
- balldontlie.io for free NBA stats
- SHAP for explainable AI framework
📞 Contact
- Website: sportintel.ai
- GitHub: roizenlabs/sportintel-mcp
- Twitter: @SportIntelAI
- Discord: Join Community
⚡ Quick Links
Built with ❤️ by RoizenLabs | From railroad diagnostics to AI-powered DFS intelligence
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。