SQL Query Optimizer

SQL Query Optimizer

Analyzes SQL queries for performance issues, provides optimization suggestions with automated rewriting, and recommends indexes across multiple database dialects (PostgreSQL, MySQL, Oracle, SQL Server).

Category
访问服务器

README

SQL Query Optimizer MCP Server

A powerful Model Context Protocol (MCP) server that analyzes, optimizes, and suggests indexes for SQL queries across multiple dialects (PostgreSQL, MySQL, Oracle, SQL Server). Built with Python and sqlglot.

Features

Advanced Query Analysis

  • Complexity Scoring: Calculates a heuristic complexity score (1-10) based on joins, subqueries, and set operations.
  • Detailed Breakdown: Provides a granular breakdown of what contributes to the complexity.
  • Anti-Pattern Detection: Identifies performance killers like:
    • SELECT * usage
    • Implicit type casts (e.g., id = '123')
    • Potential N+1 queries (LIMIT without ORDER BY)
    • NULL pitfalls in NOT IN subqueries
    • Join explosions (> 3 joins)

Query Optimization

  • Automated Rewriting: Uses sqlglot to apply optimization rules like predicate pushdown and simplification.
  • Alternative Suggestions: Generates alternative query forms (e.g., formatted only, CTE refactoring) alongside the main optimization.
  • Cost Estimation: Estimates the structural complexity reduction (e.g., "~30%").
  • DDL Generation: Generates CREATE INDEX statements for suggested indexes.

Explain Plan Visualization

  • ASCII Tree View: Visualizes EXPLAIN output as an easy-to-read ASCII tree.
  • Plan Parsing: Extracts scans, costs, and rows from Postgres and MySQL plans.

Index Suggestions

  • Composite Indexes: Suggests multi-column indexes for AND conditions.
  • Covering Indexes: Recommends extending indexes to include selected columns (Index-Only Scans).
  • Smart Prioritization: Ranks suggestions by impact (Critical, High, Medium, Low).

Installation

  1. Clone the repository:

    git clone https://github.com/yourusername/mcp-sql-optimizer.git
    cd mcp-sql-optimizer
    
  2. Create a virtual environment:

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
    
  3. Install dependencies:

    pip install -r requirements.txt
    

Configuration

Add the server to your MCP client configuration (e.g., claude_desktop_config.json):

{
  "mcpServers": {
    "sql-optimizer": {
      "command": "C:\\path\\to\\venv\\Scripts\\python.exe",
      "args": [
        "C:\\path\\to\\mcp-sql-optimizer\\server.py"
      ],
      "env": {
        "PYTHONPATH": "C:\\path\\to\\mcp-sql-optimizer"
      }
    }
  }
}

Note: On Windows, use double backslashes \\ in paths. The PYTHONPATH is crucial for the server to find its internal modules.

🐳 Docker (Recommended)

Run the server in a container to avoid environment issues.

  1. Build the image:

    docker build -t mcp-sql-optimizer .
    
  2. Configure Claude Desktop:

    {
      "mcpServers": {
        "sql-optimizer": {
          "command": "docker",
          "args": [
            "run",
            "-i",
            "--rm",
            "mcp-sql-optimizer"
          ]
        }
      }
    }
    

Usage

The server exposes the following MCP tools:

analyze_query

Analyzes a SQL query for performance issues, complexity, and anti-patterns. Optionally accepts an explain_plan string to visualize the execution plan.

Input:

{
  "sql": "SELECT * FROM orders WHERE user_id = '123'",
  "dialect": "postgres"
}

optimize_query

Rewrites the query to be more performant and provides alternative suggestions.

Input:

{
  "sql": "SELECT * FROM users WHERE id IN (SELECT user_id FROM orders)",
  "dialect": "postgres"
}

suggest_indexes

Suggests indexes to improve query performance, including DDL statements.

Input:

{
  "sql": "SELECT * FROM users WHERE region_id = 5 AND status = 'active'",
  "dialect": "postgres"
}

Project Structure

mcp-sql-optimizer/
├── server.py              # Main MCP server entry point
├── core/
│   ├── analyzer.py        # Performance & complexity analysis
│   ├── rewriter.py        # Query optimization & alternatives
│   ├── indexer.py         # Index suggestion logic
│   ├── explain_parser.py  # Explain plan parsing & visualization
│   ├── parser.py          # SQL parsing wrapper
│   └── dialect_detector.py# Dialect inference
├── utils/                 # Helper utilities
└── tests/                 # Unit tests

Development

Run the demo client to test features without an MCP client:

python demo_client.py

Run unit tests:

python -m unittest discover tests

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选