SQLite MCP Server

SQLite MCP Server

Enables LLM agents to perform complete database operations on SQLite databases, including creating tables, executing queries, and managing data through CRUD operations with schema inspection capabilities.

Category
访问服务器

README

SQLite MCP Server

A Model Context Protocol (MCP) server for SQLite database operations, built with FastMCP. This server allows LLM agents to read, create, update, and delete data in SQLite databases.

Features

  • Database Management: Open/close SQLite databases
  • CRUD Operations: Create tables, insert, read, update, and delete records
  • Query Execution: Execute raw SQL SELECT queries
  • Schema Inspection: List tables and view table schemas
  • Type-Safe: Full type hints and error handling

Installation

Prerequisites

  • Python 3.8 or higher
  • pip

Setup

  1. Clone or navigate to the project directory:
cd sqlite-mcp
  1. Create a virtual environment (recommended):
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt

Quick Start

Running the Server

# Using the npm script
npm start

# Or directly with Python
python -m sqlite_mcp.server

# Or with uvicorn (if using HTTP transport)
uvicorn sqlite_mcp.server:mcp --reload

Available Tools

1. open_database

Opens or creates a SQLite database file.

Parameters:

  • path (string): Path to the SQLite database file

Example:

{
  "path": "/path/to/my_database.db"
}

2. close_database

Closes the current database connection.

Example:

{}

3. execute_query

Execute a SELECT query and return results.

Parameters:

  • query (string): SQL SELECT query
  • parameters (array, optional): Query parameters for prepared statements

Example:

{
  "query": "SELECT * FROM users WHERE age > ?",
  "parameters": [18]
}

4. create_table

Create a new table in the database.

Parameters:

  • table (string): Table name
  • schema (string): Column definitions

Example:

{
  "table": "users",
  "schema": "id INTEGER PRIMARY KEY, name TEXT NOT NULL, email TEXT UNIQUE, age INTEGER"
}

5. insert

Insert a row into a table.

Parameters:

  • table (string): Table name
  • data (object): Column names and values

Example:

{
  "table": "users",
  "data": {
    "name": "John Doe",
    "email": "john@example.com",
    "age": 30
  }
}

6. update

Update rows in a table.

Parameters:

  • table (string): Table name
  • data (object): Column names and new values
  • where (string): WHERE clause condition
  • where_params (array, optional): Parameters for WHERE clause

Example:

{
  "table": "users",
  "data": {
    "age": 31
  },
  "where": "id = ?",
  "where_params": [1]
}

7. delete

Delete rows from a table.

Parameters:

  • table (string): Table name
  • where (string): WHERE clause condition
  • where_params (array, optional): Parameters for WHERE clause

Example:

{
  "table": "users",
  "where": "id = ?",
  "where_params": [1]
}

8. list_tables

List all tables in the database.

Example:

{}

Returns:

{
  "tables": ["users", "products", "orders"]
}

9. get_table_schema

Get the schema of a table (columns, types, constraints).

Parameters:

  • table (string): Table name

Example:

{
  "table": "users"
}

Returns:

{
  "columns": [
    {
      "cid": 0,
      "name": "id",
      "type": "INTEGER",
      "notnull": 0,
      "dflt_value": null,
      "pk": 1
    },
    {
      "cid": 1,
      "name": "name",
      "type": "TEXT",
      "notnull": 1,
      "dflt_value": null,
      "pk": 0
    }
  ]
}

Usage Examples

Example 1: Create a Database and Table

# Open database
call open_database with path="/tmp/myapp.db"

# Create a users table
call create_table with table="users" schema="id INTEGER PRIMARY KEY, name TEXT NOT NULL, email TEXT UNIQUE, age INTEGER"

# List tables
call list_tables with no parameters

Example 2: Insert and Query Data

# Insert a user
call insert with table="users" data={"name": "Alice Johnson", "email": "alice@example.com", "age": 28}

# Query users
call execute_query with query="SELECT * FROM users WHERE age >= ?" parameters=[25]

Example 3: Update Records

# Update user's age
call update with table="users" data={"age": 29} where="name = ?" where_params=["Alice Johnson"]

# Verify update
call execute_query with query="SELECT * FROM users WHERE name = ?" parameters=["Alice Johnson"]

Example 4: Delete Records

# Delete a user
call delete with table="users" where="id = ?" where_params=[1]

# List remaining users
call execute_query with query="SELECT * FROM users"

Integration with LLM Agents

This MCP server is designed to be used with LLM agents. When configured properly, the agent can:

  1. Create databases and tables
  2. Insert, update, and delete records
  3. Query data
  4. Inspect database schemas

Example Agent Prompt

You have access to a SQLite database through MCP tools.
Create a simple task management database with the following requirements:
1. Create a "tasks" table with columns: id (PRIMARY KEY), title, description, status, and created_at
2. Insert 3 sample tasks
3. Query all tasks with status='pending'
4. Update the first task's status to 'completed'

Error Handling

All tools include comprehensive error handling. Common errors:

  • "No database is open": Call open_database first
  • "Table creation failed": Check SQL syntax in schema parameter
  • "Query execution failed": Verify SQL query syntax and parameters
  • "Insert/Update/Delete failed": Check table name, column names, and data types

Project Structure

sqlite-mcp/
├── sqlite_mcp/
│   ├── __init__.py        # Package initialization
│   ├── server.py          # FastMCP server with tool definitions
│   └── db.py              # SQLite database operations
├── requirements.txt       # Python dependencies
├── package.json           # Project metadata
└── README.md             # This file

Configuration

To use this server with Claude or other MCP clients, add it to your configuration file:

For Claude Desktop

Edit ~/.config/Claude/claude_desktop_config.json:

{
  "mcpServers": {
    "sqlite-mcp": {
      "command": "python",
      "args": ["-m", "sqlite_mcp.server"],
      "cwd": "/path/to/sqlite-mcp"
    }
  }
}

Performance Notes

  • SQLite is suitable for single-user and small-team applications
  • For concurrent access, consider using connection pooling
  • Large queries may benefit from appropriate indexing
  • Use transactions for data consistency (can be added if needed)

Security Considerations

⚠️ Important: This server executes SQL queries directly. When using with untrusted input:

  1. Always use parameterized queries (the parameters fields in tools)
  2. Validate input data before sending to the server
  3. Restrict database file permissions
  4. Don't expose sensitive data in database files

Troubleshooting

Server Won't Start

  • Check Python version (3.8+)
  • Verify all dependencies installed: pip install -r requirements.txt
  • Check for port conflicts if using HTTP transport

Database File Not Found

  • Ensure the directory path exists
  • Check file permissions
  • Use absolute paths for database files

Query Errors

  • Verify table names and column names match exactly
  • Use proper SQL syntax
  • Check data types match column definitions

Development

To modify the server:

  1. Edit sqlite_mcp/server.py to add new tools
  2. Edit sqlite_mcp/db.py to modify database operations
  3. Restart the server to apply changes

License

MIT

Contributing

Feel free to submit issues and enhancement requests!

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选