SRT Translation MCP Server
Enables processing and translating SRT subtitle files with intelligent conversation detection and context preservation. Supports parsing, validation, chunking of large files, and translation while maintaining precise timing and HTML formatting.
README
SRT Translation MCP Server
A Model Context Protocol (MCP) server for processing and translating SRT subtitle files with intelligent conversation detection and context preservation.
Features
- SRT File Processing: Parse, validate, and manipulate SRT subtitle files
- Large File Support: Intelligent chunking for processing large SRT files
- Conversation Detection: Context-aware analysis for better translation quality
- Style Tag Preservation: Maintain HTML-style formatting during translation
- Timing Synchronization: Preserve precise timing information
- MCP Integration: Standardized interface for AI assistant integration
Installation
# Install dependencies
npm install
# Build the project
npm run build
# Run tests
npm test
Usage
As an MCP Server
# Start the MCP server
npm start
# Or run directly with npx
npx srt-translation-mcp-server
Available MCP Tools
parse_srt: Parse and validate SRT file contentwrite_srt: Write SRT file from parsed datadetect_conversations: Detect conversation boundaries in SRT contenttranslate_srt: Translate SRT content with context preservationtranslate_chunk: Translate a specific chunk of SRT content
Example Usage
// Parse SRT file
const result = await mcpClient.callTool('parse_srt', {
content: srtFileContent
});
// Detect conversations
const conversations = await mcpClient.callTool('detect_conversations', {
content: srtFileContent
});
// Translate SRT file
const translated = await mcpClient.callTool('translate_srt', {
content: srtFileContent,
targetLanguage: 'es',
preserveFormatting: true
});
Development
# Development mode with hot reload
npm run dev
# Run tests in watch mode
npm run test:watch
# Lint code
npm run lint
# Fix linting issues
npm run lint:fix
Architecture
Core Components
- SRT Parser: Handles SRT file parsing and validation
- Time Parser: Manages SRT time format operations
- Style Tags: Preserves HTML-style formatting
- Conversation Detector: Identifies conversation boundaries
- Translation Service: Context-aware translation processing
- MCP Server: Protocol implementation for AI integration
Key Features
- Intelligent Chunking: Breaks large files at natural conversation boundaries
- Context Preservation: Maintains conversation context for better translations
- Style Tag Support: Preserves HTML formatting during translation
- Timing Validation: Ensures timing sequences are valid and ascending
- Error Handling: Comprehensive error reporting and validation
Testing
The project includes comprehensive tests for all core functionality:
- Time parsing and formatting
- SRT file parsing and validation
- Style tag detection and preservation
- Conversation detection algorithms
- Translation workflow integration
Run tests with:
npm test
License
MIT License - see LICENSE file for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。