SSO MCP Server

SSO MCP Server

Provides Azure Entra ID authenticated access to organizational development resources including checklists, process documentation, and workflows with dual-mode authentication support.

Category
访问服务器

README

SSO MCP Server

MCP server providing development tools with Azure Entra ID authentication.

Overview

This server implements the Model Context Protocol (MCP) to expose development tools to AI coding assistants like GitHub Copilot and Claude Code. It provides access to organizational resources such as:

  • Development Checklists: Quality standards and verification items for code reviews, architecture, and design
  • Process Documentation: Step-by-step procedures for development workflows like deployments, incident response, and code reviews
  • More tools coming soon: The server is designed to be extensible with additional development resources

The server supports two authentication modes:

  • Local Mode: Browser-based Azure SSO for desktop/developer use
  • Cloud Mode: Bearer token validation for server deployments

Features

  • Dual-mode authentication (Local SSO / Cloud Bearer tokens)
  • OAuth 2.1 compliant Resource Server (Cloud mode)
  • Checklist tools: get_checklist, list_checklists
  • Process tools: get_process, list_processes, search_processes
  • HTTP Streamable transport for MCP communication
  • JWKS-based token validation with caching
  • Secure local token persistence (Local mode)
  • YAML frontmatter-based metadata for all content types
  • Keyword search with relevance ranking for processes

Prerequisites

  • Python 3.11+
  • uv package manager
  • Azure App Registration
  • VSCode with GitHub Copilot or Claude Code

Installation

# Clone the repository
git clone <repository-url>
cd sso-mcp-server

# Install dependencies
uv sync

# Configure environment
cp .env.example .env
# Edit .env with your configuration

Authentication Modes

Local Mode (Default)

For desktop/developer use with browser-based Azure SSO:

AUTH_MODE=local
AZURE_CLIENT_ID=your-app-registration-client-id
AZURE_TENANT_ID=your-azure-tenant-id
CHECKLIST_DIR=./checklists

Cloud Mode

For server deployments with Bearer token validation:

AUTH_MODE=cloud
RESOURCE_IDENTIFIER=api://your-app-id
ALLOWED_ISSUERS=https://login.microsoftonline.com/your-tenant-id/v2.0
CHECKLIST_DIR=./checklists

Auto Mode

Automatically detects mode from request context:

AUTH_MODE=auto
# Configure both local and cloud settings

Configuration

Variable Mode Required Default Description
AUTH_MODE All No local local, cloud, or auto
AZURE_CLIENT_ID Local Yes* - Azure app client ID
AZURE_TENANT_ID Local Yes* - Azure tenant ID
RESOURCE_IDENTIFIER Cloud Yes* - API resource URL (audience)
ALLOWED_ISSUERS Cloud Yes* - Comma-separated issuer URLs
JWKS_CACHE_TTL Cloud No 3600 JWKS cache TTL (seconds)
CHECKLIST_DIR All Yes - Checklist directory
PROCESS_DIR All No ./processes Process documentation directory
MCP_PORT All No 8080 Server port
LOG_LEVEL All No INFO Log level

Usage

Start the server:

# Local mode
uv run sso-mcp-server

# Cloud mode
AUTH_MODE=cloud \
  RESOURCE_IDENTIFIER=api://my-app \
  ALLOWED_ISSUERS=https://login.microsoftonline.com/tenant/v2.0 \
  CHECKLIST_DIR=./checklists \
  uv run sso-mcp-server

The server uses HTTP Streamable transport. Configure your AI assistant to connect to http://localhost:8080/mcp.

Supported Clients

This MCP server works with:

  • Claude Desktop - Add to claude_desktop_config.json
  • VSCode with GitHub Copilot - Add to .vscode/mcp.json
  • Cline - Configure via Cline's MCP UI
  • GitHub Copilot CLI - Add to ~/.copilot/mcp-config.json
  • Claude Code CLI - Add to ~/.claude/claude_desktop_config.json

Example configuration:

{
  "mcpServers": {
    "sso-checklist": {
      "type": "http",
      "url": "http://localhost:8080/mcp"
    }
  }
}

Available Tools

Checklist Tools

get_checklist

Retrieve a specific checklist by name (case-insensitive).

{
  "name": "coding"
}

list_checklists

List all available checklists with metadata (name, description).

Process Tools

get_process

Retrieve a specific process document by name (case-insensitive).

{
  "name": "code-review"
}

list_processes

List all available process documents with metadata (name, description).

search_processes

Search for processes by keyword across name, description, and content. Returns up to 50 results ranked by relevance.

{
  "keyword": "deployment"
}

Creating Content

Checklists

Add markdown files to your CHECKLIST_DIR with YAML frontmatter:

---
name: Coding Standards
description: Code quality checklist for reviews
---
# Coding Standards Checklist

## Naming
- [ ] Variables use descriptive names
- [ ] Functions follow verb_noun pattern

## Structure
- [ ] Single responsibility per function
- [ ] No code duplication

Processes

Add markdown files to your PROCESS_DIR with YAML frontmatter:

---
name: Code Review Process
description: Step-by-step guide for conducting code reviews
---
# Code Review Process

## Before Review
1. Ensure all tests pass
2. Check code coverage

## During Review
1. Review for correctness
2. Check for security issues
3. Verify coding standards compliance

Development

# Run tests
uv run pytest

# Run tests with coverage
uv run pytest --cov=sso_mcp_server

# Run linting
uv run ruff check src/ tests/

# Run formatting
uv run ruff format src/ tests/

# Run security scan
uv run bandit -r src/

Documentation

Project Structure

src/sso_mcp_server/
├── auth/           # Authentication (local + cloud modes)
│   └── cloud/      # JWT validation, JWKS client
├── checklists/     # Checklist service (get, list)
├── processes/      # Process service (get, list, search)
├── config/         # Settings and configuration
├── metadata/       # Protected Resource Metadata
├── tools/          # MCP tool implementations
└── server.py       # FastMCP server

checklists/         # Default checklist directory
processes/          # Default process directory

tests/
├── unit/           # Unit tests (266+ total)
├── integration/    # Integration tests
└── e2e/            # End-to-end tests (31 scenarios)

Version History

v0.3.0 (2025-12-13)

  • Added Process Query feature with 3 new MCP tools: get_process, list_processes, search_processes
  • Keyword search with relevance ranking across process documentation
  • E2E test suite with 31 scenarios (100% pass rate)
  • Updated project description to reflect multi-function server capability

v0.2.0 (2025-12-12)

  • Added dual-mode authentication (LOCAL, CLOUD, AUTO)
  • Added OAuth 2.1 Resource Server support
  • Added JWT token validation with JWKS
  • Added Protected Resource Metadata (RFC 9728)
  • Added 91 new tests (218 total)

v0.1.0 (2025-12-11)

  • Initial release
  • Azure Entra ID SSO authentication
  • MCP tools for checklist management
  • HTTP Streamable transport

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选