STAC MCP Server
Enables AI assistants to search and access geospatial datasets through STAC (SpatioTemporal Asset Catalog) APIs. Supports querying satellite imagery, weather data, and other geospatial assets with spatial, temporal, and attribute filters.
README
STAC MCP Server
An MCP (Model Context Protocol) Server that provides access to STAC (SpatioTemporal Asset Catalog) APIs for geospatial data discovery and access.
Overview
This MCP server enables AI assistants and applications to interact with STAC catalogs to:
- Search and browse STAC collections
- Find geospatial datasets (satellite imagery, weather data, etc.)
- Access metadata and asset information
- Perform spatial and temporal queries
Features
Available Tools
search_collections: List and search available STAC collectionsget_collection: Get detailed information about a specific collectionsearch_items: Search for STAC items with spatial, temporal, and attribute filtersget_item: Get detailed information about a specific STAC item
Supported STAC Catalogs
By default, the server connects to Microsoft Planetary Computer STAC API, but it can be configured to work with any STAC-compliant catalog.
Installation
PyPI Package
pip install stac-mcp
Development Installation
git clone https://github.com/BnJam/stac-mcp.git
cd stac-mcp
pip install -e .
Container
The STAC MCP server is available as a secure distroless container image with semantic versioning:
# Pull the latest stable version
docker pull ghcr.io/bnjam/stac-mcp:latest
# Pull a specific version (recommended for production)
docker pull ghcr.io/bnjam/stac-mcp:0.1.0
# Run the container (uses stdio transport for MCP)
docker run --rm -i ghcr.io/bnjam/stac-mcp:latest
Container images are tagged with semantic versions:
ghcr.io/bnjam/stac-mcp:1.2.3(exact version)ghcr.io/bnjam/stac-mcp:1.2(major.minor)ghcr.io/bnjam/stac-mcp:1(major)ghcr.io/bnjam/stac-mcp:latest(latest stable)
Building the Container
To build the container locally using the provided Containerfile:
# Build with Docker
docker build -f Containerfile -t stac-mcp .
# Or build with Podman
podman build -f Containerfile -t stac-mcp .
The container uses a multi-stage build with:
- Builder stage: Python 3.12 slim image for building dependencies
- Runtime stage: Distroless Python image for security and minimal size
- Security: Runs as non-root user, minimal attack surface
- Transport: Uses stdio for MCP protocol communication
Usage
As an MCP Server
Native Installation
Configure your MCP client to connect to this server:
{
"mcpServers": {
"stac": {
"command": "stac-mcp"
}
}
}
Container Usage
To use the containerized version with an MCP client:
{
"mcpServers": {
"stac": {
"command": "docker",
"args": ["run", "--rm", "-i", "ghcr.io/bnjam/stac-mcp:latest"]
}
}
}
Or with Podman:
{
"mcpServers": {
"stac": {
"command": "podman",
"args": ["run", "--rm", "-i", "ghcr.io/bnjam/stac-mcp:latest"]
}
}
}
Command Line
Native Installation
stac-mcp
Container Usage
# With Docker
docker run --rm -i ghcr.io/bnjam/stac-mcp:latest
# With Podman
podman run --rm -i ghcr.io/bnjam/stac-mcp:latest
Examples
Search Collections
# Find all available collections
search_collections(limit=20)
# Search collections from a different catalog
search_collections(catalog_url="https://earth-search.aws.element84.com/v1", limit=10)
Search Items
# Search for Landsat data over San Francisco
search_items(
collections=["landsat-c2l2-sr"],
bbox=[-122.5, 37.7, -122.3, 37.8],
datetime="2023-01-01/2023-12-31",
limit=10
)
# Search with additional query parameters
search_items(
collections=["sentinel-2-l2a"],
bbox=[-74.1, 40.6, -73.9, 40.8], # New York area
query={"eo:cloud_cover": {"lt": 10}},
limit=5
)
Get Collection Details
# Get information about a specific collection
get_collection("landsat-c2l2-sr")
Get Item Details
# Get detailed information about a specific item
get_item("landsat-c2l2-sr", "LC08_L2SR_044034_20230815_02_T1")
Development
Setup
git clone https://github.com/BnJam/stac-mcp.git
cd stac-mcp
pip install -e ".[dev]"
Testing
pytest
Linting
black stac_mcp/
ruff check stac_mcp/
Version Management
The project uses semantic versioning (SemVer) with automated version management based on branch naming:
Branch-Based Automatic Versioning
When PRs are merged to main, versions are automatically incremented based on branch prefixes:
- hotfix/ branches → patch increment (0.1.0 → 0.1.1) for bug fixes
- feature/ branches → minor increment (0.1.0 → 0.2.0) for new features
- release/ branches → major increment (0.1.0 → 1.0.0) for breaking changes
Manual Version Management
You can also manually manage versions using the version script:
# Show current version
python scripts/version.py current
# Increment version based on change type
python scripts/version.py patch # Bug fixes (0.1.0 -> 0.1.1)
python scripts/version.py minor # New features (0.1.0 -> 0.2.0)
python scripts/version.py major # Breaking changes (0.1.0 -> 1.0.0)
# Set specific version
python scripts/version.py set 1.2.3
The version system maintains consistency across:
pyproject.toml(project version)stac_mcp/__init__.py(version)stac_mcp/server.py(server_version in MCP initialization)
Container Development
To develop with containers:
# Build development image
docker build -f Containerfile -t stac-mcp:dev .
# Test the container
docker run --rm -i stac-mcp:dev
# Using docker-compose for development
docker-compose up --build
# For debugging, use an interactive shell (requires modifying Containerfile)
# docker run --rm -it --entrypoint=/bin/sh stac-mcp:dev
The Containerfile uses a secure multi-stage build approach:
- Distroless base: Minimal attack surface with no shell or package manager
- Non-root user: Container runs as unprivileged user
- Minimal dependencies: Only runtime dependencies included in final image
- Build optimization: Dependencies built in separate stage and copied over
- Production ready: Includes resource limits and security best practices
STAC Resources
License
Apache 2.0 - see LICENSE file for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。