Stealthee MCP

Stealthee MCP

Enables detection and analysis of pre-public product launches through web search, content extraction, AI-powered scoring, and automated alerting. Provides comprehensive tools for surfacing stealth startup signals before they trend publicly.

Category
访问服务器

README

Stealthee MCP - Tools for being early

Python FastAPI MCP OpenAI API Tavily Nimble Slack Alerts Smithery

Stealthee Logo

Stealthee is a dev-first system for surfacing pre-public product signals - before they trend. It combines search, extraction, scoring, and alerting into a plug-and-play pipeline you can integrate into Claude, LangGraph, Smithery, or your own AI stack via MCP.

Use it if you're:

  • An investor hunting for pre-traction signals
  • A founder scanning for competitors before launch
  • A researcher tracking emerging markets
  • A developer building agents, dashboards, or alerting tools that need fresh product intel.

What's cookin'?

MCP Tools

Tool Description
web_search Search the web for stealth launches (Tavily)
url_extract Extract content from URLs (BeautifulSoup)
score_signal AI-powered signal scoring (OpenAI)
batch_score_signals Batch process multiple signals
search_tech_sites Search tech news sites only
parse_fields Extract structured fields from HTML
run_pipeline End-to-end detection pipeline

Installation & Setup

Prerequisites

  • API keys for external services (see Environment Variables)

Quick Start

  1. Clone and Setup

    git clone https://github.com/rainbowgore/stealthee-MCP-tools
    cd stealthee-MCP-tools
    python3 -m venv .venv
    source .venv/bin/activate
    pip install -r requirements.txt
    
  2. Configure Environment

    Fill the .env file with your API keys:

    # Required
    TAVILY_API_KEY=your_tavily_key_here
    OPENAI_API_KEY=your_openai_key_here
    NIMBLE_API_KEY=your_nimble_key_here
    
    # Optional
    SLACK_WEBHOOK_URL=your_slack_webhook_here
    
  3. Start Servers

    # MCP Server (for Claude Desktop)
    python mcp_server_stdio.py
    
    # FastMCP Server (for Smithery)
    smithery dev
    
    # FastAPI Server (Optional - Legacy)
    python start_fastapi.py
    

Smithery & Claude Desktop Integration

All MCP tools listed above are available out-of-the-box in Smithery. Smithery is a visual agent and workflow builder for AI tools, letting you chain, test, and orchestrate these tools with no code.

Available Tools

  • web_search: Search the web for stealth launches using Tavily.
  • url_extract: Extract and clean content from any URL.
  • score_signal: Use OpenAI to score a single signal for stealthiness.
  • batch_score_signals: Score multiple signals in one go.
  • search_tech_sites: Search only trusted tech news sources.
  • parse_fields: Extract structured fields (like pricing, changelog) from HTML.
  • run_pipeline: End-to-end pipeline: search, extract, parse, score, and store.

How to Use in Smithery

  1. Open the Stealthee MCP Tools page on Smithery.
  2. Click "Try in Playground" to test any tool interactively.
  3. Use the visual workflow builder to chain tools together (e.g., search → extract → score).
  4. Integrate with Claude Desktop or your own agents by copying the workflow or using the API endpoints provided by Smithery.

Claude Desktop Integration

Add to your Claude Desktop config.json file:

{
  "mcpServers": {
    "stealth-mcp": {
      "command": "/path/to/stealthee-MCP-tools/.venv/bin/python",
      "args": ["/path/to/stealthee-MCP-tools/mcp_server_stdio.py"],
      "cwd": "/path/to/stealthee-MCP-tools",
      "env": {
        "TAVILY_API_KEY": "your_tavily_key",
        "OPENAI_API_KEY": "your_openai_key"
      }
    }
  }
}

Tool Use Cases

For Analysts & Builders:

  • web_search: Find stealth product mentions across the web
  • url_extract: Pull and clean raw text from landing pages
  • score_signal: Judge how likely a change log implies launch
  • batch_score_signals: Quickly triage dozens of scraped URLs
  • search_tech_sites: Limit queries to trusted domains only
  • parse_fields: Extract pricing/release info from messy HTML
  • run_pipeline: Full pipeline — search → extract → parse → score

🔬 Signal Intelligence Workflow

  1. Search Phase: Use web_search or search_tech_sites to find relevant URLs
  2. Extraction Phase: Use url_extract to get clean content from URLs
  3. Parsing Phase: Use parse_fields to extract structured data (pricing, changelog, etc.)
  4. Analysis Phase: Use score_signal or batch_score_signals for AI-powered analysis
  5. Storage Phase: All signals are stored in SQLite database
  6. Alert Phase: High-confidence signals trigger Slack notifications

⚙️ FastAPI Server

You can also run this project as a FastAPI server for REST-style access to all MCP tools.

Base Endpoints


Example Usage

Search for stealth launches:

curl -X POST "http://localhost:8000/tools/web_search" \
  -H "Content-Type: application/json" \
  -d '{"query": "stealth startup AI", "num_results": 5}'

Run full detection pipeline:

curl -X POST "http://localhost:8000/tools/run_pipeline" \
  -H "Content-Type: application/json" \
  -d '{"query": "new AI product launch", "num_results": 3}'

Pipeline Parameters

  • query (required): Search phrase (e.g. "AI roadmap")
  • num_results (optional, default: 5): Number of search results to analyze
  • target_fields (optional, default: ["pricing", "changelog"]): Fields to extract from HTML

What run_pipeline Does

  1. Searches tech and stealth-friendly sources using Tavily
  2. Extracts raw content from each result
  3. Parses structured signals (pricing, changelog, etc.)
  4. Scores each result with OpenAI to estimate stealthiness
  5. Stores results in local SQLite
  6. Notifies via Slack if confidence is high

AI Scoring Logic

The score_signal and batch_score_signals tools use GPT-3.5 to evaluate:

  • Stealth indicators (e.g. private changelogs, missing press, beta flags)
  • Confidence level (Low / Medium / High)
  • Textual reasoning (used in UI or alerting)

Database Schema (data/signals.db)

Field Type Description
id INTEGER Primary key
url TEXT Source URL
title TEXT Signal title
html_excerpt TEXT First 500 characters of content
changelog TEXT Parsed changelog (optional)
pricing TEXT Parsed pricing info (optional)
score REAL Stealth likelihood (0–1)
confidence TEXT Confidence level
reasoning TEXT AI rationale for the score
created_at TEXT ISO timestamp

Dev Quickstart (FastAPI)

python start_fastapi.py

Then visit: http://localhost:8000/docs


Built with 💜 for those who spot what others miss.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选