
Stealthee MCP
Enables detection and analysis of pre-public product launches through web search, content extraction, AI-powered scoring, and automated alerting. Provides comprehensive tools for surfacing stealth startup signals before they trend publicly.
README
Stealthee MCP - Tools for being early
Stealthee is a dev-first system for surfacing pre-public product signals - before they trend. It combines search, extraction, scoring, and alerting into a plug-and-play pipeline you can integrate into Claude, LangGraph, Smithery, or your own AI stack via MCP.
Use it if you're:
- An investor hunting for pre-traction signals
- A founder scanning for competitors before launch
- A researcher tracking emerging markets
- A developer building agents, dashboards, or alerting tools that need fresh product intel.
What's cookin'?
MCP Tools
Tool | Description |
---|---|
web_search |
Search the web for stealth launches (Tavily) |
url_extract |
Extract content from URLs (BeautifulSoup) |
score_signal |
AI-powered signal scoring (OpenAI) |
batch_score_signals |
Batch process multiple signals |
search_tech_sites |
Search tech news sites only |
parse_fields |
Extract structured fields from HTML |
run_pipeline |
End-to-end detection pipeline |
Installation & Setup
Prerequisites
- API keys for external services (see Environment Variables)
Quick Start
-
Clone and Setup
git clone https://github.com/rainbowgore/stealthee-MCP-tools cd stealthee-MCP-tools python3 -m venv .venv source .venv/bin/activate pip install -r requirements.txt
-
Configure Environment
Fill the
.env
file with your API keys:# Required TAVILY_API_KEY=your_tavily_key_here OPENAI_API_KEY=your_openai_key_here NIMBLE_API_KEY=your_nimble_key_here # Optional SLACK_WEBHOOK_URL=your_slack_webhook_here
-
Start Servers
# MCP Server (for Claude Desktop) python mcp_server_stdio.py # FastMCP Server (for Smithery) smithery dev # FastAPI Server (Optional - Legacy) python start_fastapi.py
Smithery & Claude Desktop Integration
All MCP tools listed above are available out-of-the-box in Smithery. Smithery is a visual agent and workflow builder for AI tools, letting you chain, test, and orchestrate these tools with no code.
Available Tools
- web_search: Search the web for stealth launches using Tavily.
- url_extract: Extract and clean content from any URL.
- score_signal: Use OpenAI to score a single signal for stealthiness.
- batch_score_signals: Score multiple signals in one go.
- search_tech_sites: Search only trusted tech news sources.
- parse_fields: Extract structured fields (like pricing, changelog) from HTML.
- run_pipeline: End-to-end pipeline: search, extract, parse, score, and store.
How to Use in Smithery
- Open the Stealthee MCP Tools page on Smithery.
- Click "Try in Playground" to test any tool interactively.
- Use the visual workflow builder to chain tools together (e.g., search → extract → score).
- Integrate with Claude Desktop or your own agents by copying the workflow or using the API endpoints provided by Smithery.
Claude Desktop Integration
Add to your Claude Desktop config.json
file:
{
"mcpServers": {
"stealth-mcp": {
"command": "/path/to/stealthee-MCP-tools/.venv/bin/python",
"args": ["/path/to/stealthee-MCP-tools/mcp_server_stdio.py"],
"cwd": "/path/to/stealthee-MCP-tools",
"env": {
"TAVILY_API_KEY": "your_tavily_key",
"OPENAI_API_KEY": "your_openai_key"
}
}
}
}
Tool Use Cases
For Analysts & Builders:
web_search
: Find stealth product mentions across the weburl_extract
: Pull and clean raw text from landing pagesscore_signal
: Judge how likely a change log implies launchbatch_score_signals
: Quickly triage dozens of scraped URLssearch_tech_sites
: Limit queries to trusted domains onlyparse_fields
: Extract pricing/release info from messy HTMLrun_pipeline
: Full pipeline — search → extract → parse → score
🔬 Signal Intelligence Workflow
- Search Phase: Use
web_search
orsearch_tech_sites
to find relevant URLs - Extraction Phase: Use
url_extract
to get clean content from URLs - Parsing Phase: Use
parse_fields
to extract structured data (pricing, changelog, etc.) - Analysis Phase: Use
score_signal
orbatch_score_signals
for AI-powered analysis - Storage Phase: All signals are stored in SQLite database
- Alert Phase: High-confidence signals trigger Slack notifications
⚙️ FastAPI Server
You can also run this project as a FastAPI server for REST-style access to all MCP tools.
Base Endpoints
- Swagger UI: http://localhost:8000/docs
- Health Check: http://localhost:8000/health
- Tool Manifest: http://localhost:8000/tools
Example Usage
Search for stealth launches:
curl -X POST "http://localhost:8000/tools/web_search" \
-H "Content-Type: application/json" \
-d '{"query": "stealth startup AI", "num_results": 5}'
Run full detection pipeline:
curl -X POST "http://localhost:8000/tools/run_pipeline" \
-H "Content-Type: application/json" \
-d '{"query": "new AI product launch", "num_results": 3}'
Pipeline Parameters
query
(required): Search phrase (e.g. "AI roadmap")num_results
(optional, default: 5): Number of search results to analyzetarget_fields
(optional, default: ["pricing", "changelog"]): Fields to extract from HTML
What run_pipeline Does
- Searches tech and stealth-friendly sources using Tavily
- Extracts raw content from each result
- Parses structured signals (pricing, changelog, etc.)
- Scores each result with OpenAI to estimate stealthiness
- Stores results in local SQLite
- Notifies via Slack if confidence is high
AI Scoring Logic
The score_signal and batch_score_signals tools use GPT-3.5 to evaluate:
- Stealth indicators (e.g. private changelogs, missing press, beta flags)
- Confidence level (Low / Medium / High)
- Textual reasoning (used in UI or alerting)
Database Schema (data/signals.db)
Field | Type | Description |
---|---|---|
id |
INTEGER | Primary key |
url |
TEXT | Source URL |
title |
TEXT | Signal title |
html_excerpt |
TEXT | First 500 characters of content |
changelog |
TEXT | Parsed changelog (optional) |
pricing |
TEXT | Parsed pricing info (optional) |
score |
REAL | Stealth likelihood (0–1) |
confidence |
TEXT | Confidence level |
reasoning |
TEXT | AI rationale for the score |
created_at |
TEXT | ISO timestamp |
Dev Quickstart (FastAPI)
python start_fastapi.py
Then visit: http://localhost:8000/docs
Built with 💜 for those who spot what others miss.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。