Stella MCP Server

Stella MCP Server

Enables AI assistants to programmatically create, read, validate, and modify Stella system dynamics models in the XMILE format. It supports building complex stock-and-flow diagrams and exporting them as .stmx files for use in Stella Professional.

Category
访问服务器

README

Stella MCP Server

A Model Context Protocol (MCP) server for creating and manipulating Stella system dynamics models. This enables AI assistants like Claude to programmatically build, read, validate, and save .stmx files in the XMILE format.

What is this for?

Stella is a system dynamics modeling tool used for simulating complex systems in fields like ecology, biogeochemistry, economics, and engineering. This MCP server allows AI assistants to:

  • Create models from scratch - Build stock-and-flow diagrams programmatically
  • Read existing models - Parse and understand .stmx files
  • Validate models - Check for errors like undefined variables or missing connections
  • Modify models - Add stocks, flows, auxiliaries, and connectors
  • Save models - Export valid XMILE files that open in Stella Professional

This is particularly useful for:

  • Teaching system dynamics modeling
  • Rapid prototyping of models through natural language
  • Batch creation or modification of models
  • Documenting and explaining existing models

Installation

From PyPI

pip install stella-mcp

From source

git clone https://github.com/bradleylab/stella-mcp.git
cd stella-mcp
pip install -e .

Requirements

  • Python 3.10+
  • mcp>=1.0.0

Configuration

Claude Desktop

Add to your claude_desktop_config.json:

{
  "mcpServers": {
    "stella": {
      "command": "stella-mcp"
    }
  }
}

Claude Code

Add to your .claude/settings.json:

{
  "mcpServers": {
    "stella": {
      "command": "stella-mcp"
    }
  }
}

Development mode

If running from source:

{
  "mcpServers": {
    "stella": {
      "command": "python",
      "args": ["-m", "stella_mcp.server"],
      "cwd": "/path/to/stella-mcp"
    }
  }
}

Available Tools

Model Creation & I/O

Tool Description
create_model Create a new model with name and time settings (start, stop, dt, method)
read_model Load an existing .stmx file
save_model Save model to a .stmx file

Model Building

Tool Description
add_stock Add a stock (reservoir) with initial value and units
add_flow Add a flow between stocks with an equation
add_aux Add an auxiliary variable (parameter or calculation)
add_connector Add a dependency connector between variables

Model Inspection

Tool Description
list_variables List all stocks, flows, and auxiliaries
validate_model Check for errors (undefined variables, missing connections, etc.)
get_model_xml Preview the XMILE XML output

Example Usage

Creating a simple population model

User: Create a simple exponential growth model with a population starting at 100
      and a growth rate of 0.1 per year

Claude: [Uses create_model, add_stock, add_aux, add_flow, add_connector, save_model]
        Creates population_growth.stmx with:
        - Stock: Population (initial=100)
        - Aux: growth_rate (0.1)
        - Flow: growth (Population * growth_rate) into Population

Reading and analyzing an existing model

User: Read the carbon cycle model and explain what it does

Claude: [Uses read_model, list_variables]
        This model has 3 stocks (Atmosphere, Land Biota, Soil) and 6 flows
        representing carbon exchange through photosynthesis, respiration...

Building a biogeochemical model

User: Create a two-box ocean model with surface and deep nutrients

Claude: [Uses create_model, add_stock (x4), add_aux (x8), add_flow (x6), save_model]
        Creates a model with nutrient cycling between surface and deep ocean
        including upwelling, downwelling, biological uptake, and remineralization

Validation

The validate_model tool checks for:

  • Undefined variables - References to variables that don't exist
  • Mass balance issues - Stocks without flows, flows referencing non-existent stocks
  • Missing connections - Equations using variables without connectors (warning)
  • Orphan flows - Flows not connected to any stock
  • Circular dependencies - Infinite loops in auxiliary calculations

XMILE Compatibility

  • Output files use the XMILE standard
  • Compatible with Stella Professional 1.9+ and Stella Architect
  • Auto-layout positions elements reasonably; adjust manually in Stella if needed
  • Variable names with spaces are converted to underscores internally

Project Structure

stella-mcp/
├── README.md
├── LICENSE
├── pyproject.toml
└── stella_mcp/
    ├── __init__.py
    ├── server.py      # MCP server implementation
    ├── xmile.py       # XMILE XML generation and parsing
    └── validator.py   # Model validation logic

Contributing

Contributions are welcome! Please feel free to submit issues or pull requests.

License

MIT License - see LICENSE for details.

Acknowledgments

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选