StockMCP
Provides real-time stock market data and financial analysis through Yahoo Finance integration. Enables users to get quotes, historical prices, fundamentals, dividends, analyst forecasts, and growth projections for any stock symbol.
README
📈 StockMCP
A comprehensive Model Context Protocol (MCP) server for real-time stock market data using Yahoo Finance
StockMCP provides a powerful, JSON-RPC 2.0 compliant interface for accessing comprehensive stock market data, built on the Model Context Protocol standard. Perfect for AI applications, financial analysis tools, and trading bots.
🌐 Free Hosted Endpoint
Use StockMCP immediately without any setup! We provide a free hosted endpoint at:
- Endpoint:
https://stockmcp.leoguerin.fr/mcp - No API key required - Just add to your MCP client configuration
Claude Desktop Configuration
For immediate access, use this configuration in your claude_desktop_config.json:
{
"mcpServers": {
"stock-mcp": {
"command": "npx",
"args": [
"mcp-remote",
"https://stockmcp.leoguerin.fr/mcp",
"--header",
"--allow-http"
]
}
}
}
Configuration file locations:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\\Claude\\claude_desktop_config.json
🛠️ Available Tools
| Tool Name | Description |
|---|---|
get_realtime_quote |
Retrieve current market data including price, volume, market cap, and key financial ratios |
get_fundamentals |
Access comprehensive financial statements (income, balance sheet, cash flow) and calculated ratios |
get_price_history |
Get historical OHLCV data with optional total return calculation including reinvested dividends |
get_dividends_and_actions |
Analyze dividend payment history and corporate actions with quality metrics and consistency scoring |
get_analyst_forecasts |
Get analyst price targets, consensus ratings (Buy/Hold/Sell), and EPS forecasts from professional analysts |
get_growth_projections |
Forward growth projections for revenue, earnings (EPS), and free cash flow with 1-year, 3-year, and 5-year CAGR estimates |
🚀 Quick Start
API Key Setup
- Get a free Alpha Vantage API key: Visit https://www.alphavantage.co/support/#api-key
- Configure environment:
# Copy the example environment file cp .env.example .env # Edit .env and add your API key ALPHAVANTAGE_KEY=your-actual-api-key-here
Using Docker (Recommended)
# Clone the repository
git clone https://github.com/yourusername/StockMCP.git
cd StockMCP
# Configure your API key (see API Key Setup above)
cp .env.example .env
# Edit .env with your Alpha Vantage API key
# Build and run with Docker
docker build -t stockmcp .
docker run -p 3001:3001 --env-file .env stockmcp
Local Development
# Install dependencies with uv (fastest)
uv sync
# Or with pip
pip install -e .
# Configure your API key (see API Key Setup above)
cp .env.example .env
# Edit .env with your Alpha Vantage API key
# Run the server
python src/main.py
# Server runs on http://localhost:3001/mcp
MCP Client Integration
Once your server is running, integrate it with MCP clients:
Claude Desktop
Edit the configuration file:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json
Add this configuration:
{
"mcpServers": {
"stock-mcp": {
"command": "npx",
"args": [
"mcp-remote",
"http://localhost:3001/mcp",
"--header",
"--allow-http"
]
}
}
}
Cursor
Add to your MCP configuration:
{
"stock-mcp": {
"command": "npx",
"args": [
"mcp-remote",
"http://localhost:3001/mcp",
"--header",
"--allow-http"
]
}
}
Other MCP Clients
For any MCP-compatible client, use:
- Endpoint:
http://localhost:3001/mcp - Protocol: JSON-RPC 2.0 over HTTP
- Tools: Available via
tools/listmethod
🔗 Usage
StockMCP implements the Model Context Protocol (MCP) for seamless integration with AI applications. Once running, the server provides:
- Endpoint:
http://localhost:3001/mcp - Protocol: JSON-RPC 2.0 over HTTP
- Discovery: Use
tools/listto get available tools - Execution: Use
tools/callto execute tools with parameters
For detailed API examples and JSON schemas, access the interactive documentation at http://localhost:3001/mcp/docs when the server is running.
🛠️ Development
Project Structure
StockMCP/
├── src/
│ ├── main.py # FastAPI server and endpoints
│ ├── models.py # Pydantic models for MCP and stock data
│ ├── mcp_handlers.py # MCP protocol request handlers
│ ├── tools.py # Tools package entry point
│ └── tools/ # Modular tools implementation
│ ├── market_data.py # Real-time quotes, history, fundamentals
│ ├── analysis.py # Forecasts and growth projections
│ └── registry.py # Tool registration and execution
├── tests/ # Comprehensive test suite (100 tests)
├── Dockerfile # Container configuration
├── pyproject.toml # Project dependencies and configuration
└── README.md # This file
Running Tests
# Run all tests
uv run pytest
# Run with verbose output
uv run pytest -v
# Run specific test file
uv run pytest tests/test_api.py
# Run with coverage
uv run pytest --cov=src
Dependencies
Core Dependencies:
- FastAPI - Modern web framework for APIs
- Pydantic - Data validation using Python type hints
- yfinance - Yahoo Finance data retrieval (primary data source)
- pandas - Data manipulation and analysis
- scipy - Scientific computing (required by yfinance)
Development Dependencies:
- pytest - Testing framework
- httpx - HTTP client for testing
- pytest-mock - Mocking utilities
🐳 Docker Deployment
Build and Run
# Build the image
docker build -t stockmcp .
# Run the container
docker run -p 3001:3001 stockmcp
# Run in background
docker run -d -p 3001:3001 --name stockmcp-server stockmcp
Environment Configuration
The container exposes the API on port 3001 by default. You can customize this:
# Custom port mapping
docker run -p 8080:3001 stockmcp
# With environment variables
docker run -p 3001:3001 -e LOG_LEVEL=DEBUG stockmcp
🔧 Configuration
Server Configuration
The server can be configured through environment variables:
LOG_LEVEL- Logging level (DEBUG, INFO, WARNING, ERROR)HOST- Server host (default: 0.0.0.0)PORT- Server port (default: 3001)
API Limits & Data Sources
Primary Data Source: Yahoo Finance (yfinance)
- Free tier with reasonable rate limits
- Real-time and historical data
- No API key required for basic usage
Secondary Data Source: Alpha Vantage (optional)
- Enhanced earnings estimates and forecasts
- Requires free API key for extended features
- Graceful fallback when unavailable
Production Recommendations:
- Implement request caching
- Add retry logic with exponential backoff
- Monitor API usage patterns
- Consider data source redundancy
🤝 Contributing
We welcome contributions! Here's how to get started:
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Make your changes with proper tests
- Run the test suite (
uv run pytest) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
Development Guidelines
- Type Hints - All functions should have proper type annotations
- Tests - New features must include comprehensive tests
- Documentation - Update README and docstrings for any API changes
- Code Style - Follow PEP 8 and use meaningful variable names
📝 License
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgments
- Yahoo Finance - For providing free stock market data
- Model Context Protocol - For the excellent protocol specification
- FastAPI - For the amazing web framework
- Pydantic - For robust data validation
📞 Support
- 🐛 Bug Reports - Open an issue
- 💡 Feature Requests - Start a discussion
- 📖 Documentation - Check our comprehensive API docs
- 💬 Community - Join our discussions for help and ideas
<div align="center">
Made with ❤️ for the financial data community by Léo Guerin
⭐ Star this repo | 🍴 Fork it | 📖 Docs
</div>
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。