StreamSets MCP Server

StreamSets MCP Server

Enables complete StreamSets Control Hub integration through conversational AI, allowing users to manage data pipelines, monitor jobs, and interactively build new pipelines with 44 tools across 9 StreamSets services. Features persistent pipeline builder sessions that let users create complete ETL workflows through natural language conversations.

Category
访问服务器

README

StreamSets MCP Server

A comprehensive Model Context Protocol (MCP) server that provides seamless integration with StreamSets Control Hub APIs, enabling complete data pipeline management and creation through conversational AI.

🚀 Features

Pipeline Management (Read Operations)

  • Job Management: List, start, stop, and monitor job execution
  • Pipeline Operations: Browse, search, and analyze pipeline configurations
  • Connection Management: Manage data connections and integrations
  • Metrics & Analytics: Comprehensive performance and usage analytics
  • Enterprise Integration: Deployment management, security audits, and alerts

Pipeline Building (Write Operations) 🆕

  • Interactive Pipeline Creation: Build pipelines through conversation
  • Stage Library: Access to 25+ StreamSets stages (Origins, Processors, Destinations, Executors)
  • Visual Flow Management: Connect stages with data and event streams
  • Persistent Sessions: Pipeline builders persist across conversations
  • Smart Validation: Automatic validation of pipeline logic and connections

📊 API Coverage

44 Tools covering 9 StreamSets Services:

  • Job Runner API (11 tools) - Job lifecycle management
  • Pipeline Repository API (7 tools) - Pipeline CRUD operations
  • Connection API (4 tools) - Data connection management
  • Provisioning API (5 tools) - Infrastructure and deployment
  • Notification API (2 tools) - Alert and notification management
  • Topology API (1 tool) - System topology information
  • Metrics APIs (7 tools) - Performance and usage analytics
  • Security API (1 tool) - Security audit trails
  • Pipeline Builder (6 tools) - Interactive pipeline creation

🏗️ Pipeline Builder Capabilities

Create Complete Data Pipelines

# 1. Initialize a new pipeline builder
sdc_create_pipeline_builder title="My ETL Pipeline" engine_type="data_collector"

# 2. Browse available stages
sdc_list_available_stages category="origins"

# 3. Add stages to your pipeline
sdc_add_pipeline_stage pipeline_id="pipeline_builder_1" stage_label="Dev Raw Data Source"
sdc_add_pipeline_stage pipeline_id="pipeline_builder_1" stage_label="Expression Evaluator"
sdc_add_pipeline_stage pipeline_id="pipeline_builder_1" stage_label="Trash"

# 4. Connect stages with data flows
sdc_connect_pipeline_stages pipeline_id="pipeline_builder_1" source_stage_id="stage_1" target_stage_id="stage_2"
sdc_connect_pipeline_stages pipeline_id="pipeline_builder_1" source_stage_id="stage_2" target_stage_id="stage_3"

# 5. Visualize your pipeline flow
sdc_get_pipeline_flow pipeline_id="pipeline_builder_1"

# 6. Build and publish (coming soon)
# sdc_build_pipeline pipeline_id="pipeline_builder_1"
# sdc_publish_pipeline pipeline_id="pipeline_builder_1"

Persistent Pipeline Sessions

  • Cross-Conversation: Continue building pipelines across multiple conversations
  • Auto-Save: All changes automatically saved to disk
  • Session Management: List, view, and delete pipeline builder sessions
  • Storage Location: ~/.streamsets_mcp/pipeline_builders/

🛠️ Installation

Prerequisites

  • Python 3.8+
  • StreamSets Control Hub account with API credentials
  • Claude Desktop (for MCP integration)

Setup

  1. Clone the repository

    git clone https://github.com/yourusername/streamsets-mcp-server.git
    cd streamsets-mcp-server
    
  2. Install dependencies

    pip install -r requirements.txt
    
  3. Configure environment variables

    export STREAMSETS_HOST_PREFIX="https://your-instance.streamsets.com"
    export STREAMSETS_CRED_ID="your-credential-id"
    export STREAMSETS_CRED_TOKEN="your-auth-token"
    
  4. Test the server

    python streamsets_server.py
    

Docker Deployment

Setup for MCP Integration

# Build the image
docker build -t streamsets-mcp-server .

# Create persistent volume for pipeline builders
docker volume create streamsets-pipeline-data

Manual Testing

# Test run with volume persistence
docker run --rm -it \
  -e STREAMSETS_HOST_PREFIX="https://your-instance.streamsets.com" \
  -e STREAMSETS_CRED_ID="your-credential-id" \
  -e STREAMSETS_CRED_TOKEN="your-auth-token" \
  -v streamsets-pipeline-data:/data \
  streamsets-mcp-server

Claude Desktop Integration

Option 1: Direct Python (Local Development)

{
  "mcpServers": {
    "streamsets": {
      "command": "python",
      "args": ["/path/to/streamsets_server.py"],
      "env": {
        "STREAMSETS_HOST_PREFIX": "https://your-instance.streamsets.com",
        "STREAMSETS_CRED_ID": "your-credential-id",
        "STREAMSETS_CRED_TOKEN": "your-auth-token"
      }
    }
  }
}

Option 2: Docker with Persistence (Production)

{
  "mcpServers": {
    "streamsets": {
      "command": "docker",
      "args": [
        "run", "--rm", "-i",
        "-v", "streamsets-pipeline-data:/data",
        "-e", "STREAMSETS_HOST_PREFIX=https://your-instance.streamsets.com",
        "-e", "STREAMSETS_CRED_ID=your-credential-id",
        "-e", "STREAMSETS_CRED_TOKEN=your-auth-token",
        "streamsets-mcp-server"
      ]
    }
  }
}

📖 Usage Examples

Job Management

# List all jobs
sdc_list_jobs organization="your-org" status="ACTIVE"

# Get detailed job information
sdc_get_job_details job_id="your-job-id"

# Start/stop jobs
sdc_start_job job_id="your-job-id"
sdc_stop_job job_id="your-job-id"

# Bulk operations
sdc_start_multiple_jobs job_ids="job1,job2,job3"

Pipeline Operations

# Search pipelines
sdc_search_pipelines search_query="name==ETL*"

# Get pipeline details
sdc_get_pipeline_details pipeline_id="your-pipeline-id"

# Export/import pipelines
sdc_export_pipelines commit_ids="commit1,commit2"

Metrics & Analytics

# Job performance metrics
sdc_get_job_metrics job_id="your-job-id"

# System health overview
sdc_get_job_count_by_status

# Executor infrastructure metrics
sdc_get_executor_metrics executor_type="COLLECTOR" label="prod"

# Security audit trails
sdc_get_security_audit_metrics org_id="your-org" audit_type="login"

🔧 Configuration

Environment Variables

Required (StreamSets Authentication)

  • STREAMSETS_HOST_PREFIX - StreamSets Control Hub URL
  • STREAMSETS_CRED_ID - API Credential ID
  • STREAMSETS_CRED_TOKEN - Authentication Token

Optional (Pipeline Builder Persistence)

  • PIPELINE_STORAGE_PATH - Custom storage directory for pipeline builders

Pipeline Builder Storage

Pipeline builders are automatically persisted across conversations and container restarts:

Storage Locations (Priority Order)

  1. Custom Path: PIPELINE_STORAGE_PATH environment variable
  2. Docker Volume: /data/pipeline_builders (when running in Docker)
  3. Default Path: ~/.streamsets_mcp/pipeline_builders/

Configuration Options

  • Format: Pickle files for session persistence
  • Management: Automatic file management with error handling
  • Fallback: Memory-only mode if no writable storage available

Docker Persistence

When using Docker, pipeline builders persist in named volumes:

# Data persists in Docker volume 'streamsets-pipeline-data'
docker volume create streamsets-pipeline-data

# Run with persistent volume
docker run --rm -it -v streamsets-pipeline-data:/data streamsets-mcp-server

Troubleshooting

  • No Persistence: Check storage directory permissions
  • Docker Issues: Ensure volume mounts are configured correctly
  • Memory Mode: Server logs will indicate if persistence is disabled

📚 Documentation

  • API Reference: See CLAUDE.md for detailed tool documentation
  • Stage Library: Built-in documentation for 25+ StreamSets stages
  • Configuration: custom.yaml for MCP server registry
  • Swagger Specs: API specifications in /swagger/ directory

🧪 Development

Project Structure

streamsets-mcp-server/
├── streamsets_server.py      # Main MCP server implementation
├── custom.yaml              # MCP server configuration
├── CLAUDE.md                # Comprehensive documentation
├── requirements.txt         # Python dependencies
├── Dockerfile              # Container deployment
├── swagger/                # API specifications
└── README.md               # This file

Adding New Tools

  1. Define tool function with @mcp.tool() decorator
  2. Add comprehensive error handling and logging
  3. Update custom.yaml with tool metadata
  4. Document in CLAUDE.md

Testing

# Syntax validation
python -m py_compile streamsets_server.py

# Tool count verification
grep -c "@mcp.tool()" streamsets_server.py

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

📝 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

  • StreamSets for the comprehensive Control Hub APIs
  • Anthropic for the Model Context Protocol framework
  • FastMCP for the Python MCP server implementation

📧 Support

For issues and questions:

  • Create an issue on GitHub
  • Check the documentation in CLAUDE.md
  • Review the API specifications in /swagger/

Transform your data pipeline workflows with conversational AI! 🚀

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选