Stripe Fraud MCP
Enables fraud analysis and management through Stripe's Radar system, allowing users to assess payment risk, create refunds, and access any Stripe API endpoint. Focuses on fraud detection with automated recommendations while providing full Stripe API access.
README
Stripe Fraud MCP
TypeScript Model Context Protocol (MCP) server that wraps the official stripe SDK. The server focuses on fraud and Radar operations while still exposing a raw request tool that lets an LLM call any Stripe REST endpoint. It is designed to run locally or inside Smithery for hosting.
Features
stripe_fraud_insight– Given apayment_intent_idorcharge_id, pulls Radar early fraud warnings, risk scores, disputes, refunds, and reviews, then returns a recommendation (refund,manual_review, ormonitor).stripe_create_refund– Creates refunds against a charge or payment intent, supporting partial amounts, reasons, and metadata.stripe_raw_request– Full access to the Stripe API viastripe.rawRequest, so you can reach any endpoint that is not yet wrapped in a specialized tool.- Built for Smithery (stdio + Streamable HTTP builds) so you can host it as a managed MCP service without writing glue code.
Prerequisites
- Node.js 20+
- Stripe secret key with the necessary permissions.
- Smithery CLI (
npx @smithery/cli) for local builds and development.
Smithery Configuration
The Smithery runtime picks up the configuration schema that lives in src/index.ts. When you install or run the server you will be prompted for:
| Config key | Required | Description |
|---|---|---|
stripe_api_key |
✅ | Secret key used to authenticate Stripe requests. |
stripe_api_version |
❌ | Optional API version override (defaults to your account version). |
default_stripe_account |
❌ | Optional connected account ID used when a request does not specify one. |
log_level |
❌ | Minimum log level to emit (debug, info, warn, error). Defaults to info. |
The repository includes smithery.yaml, so Smithery knows to treat it as a TypeScript project and to compile from src/index.ts.
Local Development
npm install
npm run dev # wraps `smithery dev`
smithery dev will prompt for your configuration values (or you can provide a --config file). It spins up both stdio and SHTTP transports so you can test with smithery proxy, Claude Desktop, or any MCP client.
Building for Deployment
npm run build:stdio– Produces.smithery/stdio/index.cjsfor stdio transport.npm run build:shttp– Produces.smithery/shttp/index.cjsfor Streamable HTTP transport.npm run build– Builds both artefacts.
When you push to Smithery, it runs the same build pipeline and hosts the generated artefact automatically.
Tool Reference
stripe_status
- Input: Optional
stripe_accountoverride. - Output: Current server time, effective configuration (API version, log level, default account), and key flags from the Stripe account (charges/payouts enabled). Useful for quick health checks in Smithery.
stripe_fraud_insight
- Input:
payment_intent_idorcharge_id(one required),include_events(boolean, defaulttrue). - Output: Structured fraud/risk summary with Stripe Radar data and an automated recommendation.
stripe_create_refund
- Input:
payment_intent_idorcharge_id, optionalamount,reason,metadata. - Output: Created refund plus Stripe response metadata.
stripe_raw_request
- Input: HTTP method (
GET,POST,DELETE),path, optionalquery,payload,idempotency_key,stripe_account,api_version. - Output: Raw response body and headers so you can reach any Stripe endpoint from the LLM.
Project Scripts
npm run dev– Runssmithery devfor interactive local development.npm run build– Builds stdio and SHTTP bundles under.smithery/.npm run build:stdio/npm run build:shttp– Build individual transports.npm run typecheck– TypeScript diagnostics without emitting files.
Logging
- The server emits structured JSON logs with timestamps, logger names, and context to make triage in Smithery or other observability tooling straightforward.
- Set
log_levelin the Smithery configuration to control verbosity;debugincludes every Stripe call and fraud-analysis step, whileinfosurfaces tool invocations and outcomes. - Sensitive values (Stripe API keys, tokens, etc.) are automatically redacted from logged context.
Next Steps
- Add additional purpose-built tools for dispute responses, Radar rule management, value list operations, etc., by wrapping the official SDK in new MCP handlers.
- Implement optional caching or memoization if you anticipate repeated lookups.
- Instrument with logging/observability before production use.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。