Super Singularity MCP Server

Super Singularity MCP Server

Integrates Claude Desktop with Super Singularity's course creation API, enabling creation and management of courses with multiple card types (content, quiz, poll, form, video, audio, link), ElevenLabs text-to-speech generation, and Azure Blob Storage for audio hosting.

Category
访问服务器

README

Super Singularity MCP Server

A Model Context Protocol (MCP) server for integrating Claude Desktop with Super Singularity's course creation API, ElevenLabs text-to-speech, and Azure Blob Storage.

Features

  • Complete Course Management: Create, update, and manage courses
  • All Card Types: Support for content, quiz, poll, form, video, audio, and link cards
  • Text-to-Speech: Generate audio from text using ElevenLabs TTS
  • Cloud Storage: Upload and host audio files on Azure Blob Storage
  • Script Preservation: Store original script text in audio card contents
  • Production Ready: Environment configuration, error handling, and timeout management

Quick Start

  1. Clone and Install:

    git clone <repository-url>
    cd mcp-servers
    uv sync
    
  2. Configure Environment:

    cp .env.example .env
    # Edit .env with your API keys and configuration
    
  3. Add to Claude Desktop: Add to ~/Library/Application Support/Claude/claude_desktop_config.json:

    {
      "mcpServers": {
        "super-singularity": {
          "command": "uv",
          "args": ["run", "python", "/path/to/mcp-servers/server.py"]
        }
      }
    }
    
  4. Restart Claude Desktop and start creating courses!

Environment Configuration

Required environment variables in .env:

# Super Singularity API
API_BASE_URL=https://your-api-domain.com
API_TOKEN=your-bearer-token-here  
COMPANY_ID=your-company-id-here

# ElevenLabs TTS
ELEVENLABS_API_KEY=your-elevenlabs-api-key-here
ELEVENLABS_VOICE_ID=21m00Tcm4TlvDq8ikWAM

# Azure Blob Storage  
AZURE_STORAGE_CONNECTION_STRING=DefaultEndpointsProtocol=https;AccountName=...
AZURE_CONTAINER_NAME=audio-files

Available Tools

Course Management

  • get_course(course_id) - Get course details
  • create_course(title, ...) - Create new course
  • get_course_cards(course_id) - Get all cards in course

Card Creation

  • create_content_card() - Text content with optional image
  • create_quiz_card() - Multiple choice questions
  • create_poll_card() - Opinion polls for collecting learner feedback
  • create_form_card() - Form inputs for collecting learner responses
  • create_video_card() - Video content
  • create_audio_card() - Audio content with optional script preservation
  • create_link_card() - External resource links

Audio Generation

  • generate_audio_from_text(text, title) - Generate audio using ElevenLabs TTS
  • Creates audio files and uploads to Azure Storage
  • Returns URL and script preservation instructions

Audio Card Workflow

Due to MCP limitations, audio card creation from script requires two steps:

  1. Generate Audio:

    generate_audio_from_text("Your script text here", "Audio Title")
    
  2. Create Card with Script Preservation:

    create_audio_card(course_id, audio_url, title, script="Your script text here")
    

The script parameter preserves the original text in the card contents for future reference.

MCP Limitations Discovered

The Problem

MCP tools that combine multiple async operations (ElevenLabs + Azure + API requests) cause "Internal Server Error" in Claude Desktop, regardless of function names or implementation approach.

Failed Attempts

All of these caused Internal Server Errors:

  • create_audio_card_from_script()
  • generate_audio_url_from_script()
  • create_audio_card_using_script()
  • test_helper_function_plus_api()

Working Solution

 Separate tools for each operation:

  • generate_audio_from_text() - Only handles ElevenLabs + Azure
  • create_audio_card() - Only handles API requests
  • Two-step workflow with clear instructions for script preservation

Root Cause Analysis

The limitation appears to be related to:

  • Complex async operation chains in single MCP tools
  • Timeout thresholds for multi-step operations
  • Memory/resource constraints in Claude Desktop MCP client
  • Event loop handling of combined external service calls

Community Validation

Our findings align with known MCP issues documented in the community:

  • GitHub Issue #424: "MCP Timeout needs to be configurable"
  • GitHub Issue #417: "MCP Server Internal Server Error Report"
  • Multiple forum discussions about timeout errors and Internal Server Errors

Best Practices Learned

  1. Keep MCP tools simple and atomic - Single responsibility per tool
  2. Avoid combining multiple external service calls in one tool
  3. Use helper functions for complex operations, but call them from separate tools
  4. Provide clear instructions in tool responses to guide multi-step workflows
  5. Test incrementally when adding new integrations

API Documentation

Complete API documentation available in: documentation/external-api-documentation.md

Dependencies

  • mcp - Model Context Protocol Python SDK
  • httpx - Async HTTP client for API requests
  • elevenlabs - ElevenLabs TTS integration
  • azure-storage-blob - Azure Blob Storage client
  • python-dotenv - Environment variable management

License

[Add your license here]

Contributing

[Add contributing guidelines here]

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选