Sushi MCP Server
Enables AI assistants to control the Sushi audio engine via gRPC for real-time audio processing, parameter automation, MIDI routing, track management, and audio configuration through natural language.
README
Sushi MCP Server
An MCP (Model Context Protocol) server for controlling Sushi audio engine via gRPC. This allows AI assistants to interact with and control Sushi-powered audio devices and applications.
Overview
Sushi MCP Server provides a bridge between AI assistants and the Sushi audio engine, enabling:
- Real-time audio processing control
- Parameter automation
- MIDI routing and control
- Track and processor management
- Preset management
- Audio routing configuration
Features
System Control
- Get Sushi version and build information
- Query audio channel counts
Transport Control
- Control playback (play, stop, record)
- Set tempo and time signature
- Manage sync modes (internal, MIDI, Link)
Track & Processor Management
- List and manage tracks
- Add/remove audio processors
- Control processor parameters
- Bypass/enable processors
- Save and load presets
Audio Routing
- Configure input/output connections
- Route audio between tracks and engine channels
MIDI Control
- Connect MIDI keyboards to tracks
- Map MIDI CC to parameters
- Send MIDI notes programmatically
- Configure MIDI routing
Real-time Updates
- Subscribe to parameter changes
- Watch specific parameters for updates
- Get real-time notifications
Prerequisites
- Python 3.13 or higher
- A running instance of Sushi with gRPC enabled
- The Sushi gRPC interface exposed (default port: 51051)
Installation
- Clone the repository:
git clone https://github.com/YOUR_USERNAME/sushi-mcp.git
cd sushi-mcp
- Create and activate a virtual environment:
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
- Install dependencies:
pip install -e .
Configuration
The server includes a sample configuration file default_config_sushi.json that demonstrates a typical Sushi setup with:
- 8 playback tracks with WAV streamers
- 2 input tracks with various effects processors
- Audio routing configurations
- Initial parameter states
You can modify this file to match your Sushi configuration.
Usage
Running the MCP Server
- Start the MCP server:
python sushi_mcp_server.py
- The server runs in stdio mode and waits for MCP client connections.
Connecting from Claude Desktop
Add the following to your Claude Desktop configuration (claude_desktop_config.json):
{
"mcpServers": {
"sushi-control": {
"command": "python",
"args": ["/path/to/sushi-mcp/sushi_mcp_server.py"],
"env": {}
}
}
}
Basic Usage Examples
Once connected, you can use natural language to control Sushi:
- "Connect to Sushi at 192.168.1.100"
- "Show me all tracks"
- "Set the tempo to 120 BPM"
- "Add a reverb to track 1"
- "Set the gain parameter of the input processor to 0.8"
- "Connect MIDI channel 1 to the synthesizer track"
- "Save the current state as a preset"
Available MCP Tools
Connection
set_sushi_server- Set the IP address and port of the Sushi server
System Information
get_sushi_info- Get Sushi version and system informationget_available_plugins- List available internal plugins
Transport Control
get_transport_info- Get current transport stateset_tempo- Set the tempo in BPMset_playing_mode- Control playback (STOPPED, PLAYING, RECORDING)
Track Management
get_all_tracks- List all tracksget_track_processors- List processors on a trackadd_processor_to_track- Add a processor to a trackremove_processor_from_track- Remove a processor
Parameter Control
get_processor_parameters- List all parameters for a processorset_parameter_value- Set a parameter valuebypass_processor- Bypass or enable a processor
Audio Routing
get_track_connections- Get audio connections for a trackconnect_input_to_track- Route audio input to a trackconnect_track_to_output- Route track to audio output
MIDI Control
get_midi_ports- Get MIDI port informationget_midi_keyboard_connections- List MIDI keyboard connectionsconnect_midi_keyboard_to_track- Connect MIDI input to trackconnect_midi_cc_to_parameter- Map MIDI CC to parametersend_note_on/send_note_off- Send MIDI notes
Preset Management
save_processor_preset- Save processor state as presetload_processor_preset- Load a saved presetlist_presets- List all saved presetssnapshot_all_tracks- Save complete session stateload_snapshot- Restore complete session state
Real-time Monitoring
subscribe_to_parameter_updates- Enable real-time updateswatch_parameter- Monitor specific parameterget_parameter_updates- Get recent parameter changes
Project Structure
sushi-mcp/
├── sushi_mcp_server.py # Main MCP server implementation
├── sushi_rpc.proto # gRPC protocol definition
├── sushi_rpc_pb2.py # Generated protobuf code
├── sushi_rpc_pb2_grpc.py # Generated gRPC code
├── default_config_sushi.json # Sample Sushi configuration
├── pyproject.toml # Project dependencies
├── presets/ # Saved presets directory
└── README.md # This file
Development
Regenerating gRPC Code
If you need to update the gRPC interface:
python -m grpc_tools.protoc -I. --python_out=. --grpc_python_out=. sushi_rpc.proto
Adding New Features
- Add new tool functions decorated with
@mcp.tool() - Implement the gRPC calls to Sushi
- Add appropriate error handling
- Update this README with the new functionality
Troubleshooting
Connection Issues
- Ensure Sushi is running with gRPC enabled
- Check that the gRPC port (default 51051) is accessible
- Verify the IP address and port with
set_sushi_server
Parameter Ranges
- The server validates parameter values against their defined ranges
- Use
get_processor_parametersto see valid ranges
MIDI Channels
- MIDI channels are 1-16 (17 for omni mode)
- Channel 0 is not valid in the MIDI specification
Contributing
Contributions are welcome! Please feel free to submit issues or pull requests.
License
This project is licensed under the same terms as your other projects. Please add appropriate license file.
Acknowledgments
- Built for the Sushi audio engine by Elk Audio
- Uses the MCP (Model Context Protocol) specification
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。