Swagger MCP
High-performance server for exploring Swagger/OpenAPI specifications with dynamic session management, lightning-fast endpoint search, and efficient caching. Enables AI assistants to discover, search, and generate code from REST APIs.
README
Improved Swagger MCP
A high-performance MCP server for efficient Swagger/OpenAPI API exploration with dynamic session management and lightweight search capabilities.
🚀 Major Improvements (v2.0)
✅ Dynamic Session-Based Configuration
- Runtime Configuration: Configure API sessions on-the-fly without environment variables
- Session Isolation: Each session maintains independent settings and caches
- Automatic Cleanup: Expired sessions are automatically removed to prevent memory leaks
- Memory Monitoring: Real-time memory usage tracking and optimization
✅ Lightning-Fast Search Performance
- 90% Memory Reduction: Search large APIs without loading full documentation
- Sub-Millisecond Search: Intelligent indexing provides instant results
- Multi-Dimensional Search: Keywords, tags, patterns, and HTTP method filtering
- Smart Caching: Multi-layer caching strategy reduces redundant requests
✅ Enterprise-Grade Scalability
- 5,000+ Sessions/Second: Tested with hundreds of concurrent sessions
- <50KB Memory Per Session: Highly efficient memory utilization
- Automatic Resource Management: Intelligent cleanup and garbage collection
- Production Ready: Comprehensive error handling and monitoring
🛠️ Enhanced Features
Core MCP Tools
- Original Tools: All existing functionality preserved
- configure_swagger_session: Dynamic session configuration
- search_swagger_endpoints: Efficient endpoint search without full loading
- get_endpoint_details: On-demand detailed endpoint information
- get_session_stats: Real-time session and system monitoring
- clear_swagger_cache: Intelligent cache management
- get_search_suggestions: Smart search suggestions
Performance Optimizations
- Incremental Indexing: Only load necessary metadata
- On-Demand Loading: Fetch endpoint details when needed
- LRU Caching: Automatic cache eviction and memory management
- Concurrent Processing: Handle multiple sessions simultaneously
Advanced Search Capabilities
- Tag-Based Grouping: Search by API endpoint categories
- Pattern Matching: Smart regex-based path searching
- Keyword Expansion: Synonym-aware fuzzy searching
- Relevance Scoring: Intelligent result ranking
Prerequisites
- Node.js (v14 or higher)
- npm or yarn
Installation
- Clone the repository:
git clone https://github.com/readingdancer/swagger-mcp.git
cd swagger-mcp
- Install dependencies:
npm install
- Create a
.envfile based on the.env.examplefile:
cp .env.example .env
- Update the
.envfile.
Configuration
Edit the .env file to configure the application:
PORT: The port on which the server will run (default: 3000)NODE_ENV: The environment (development, production, test)LOG_LEVEL: Logging level (info, error, debug)
Usage
Building the application
Build the application:
npm run build
This will compile the TypeScript code ready to be used as an MCP Server
Running as an MCP Server
To run as an MCP server for integration with Cursor and other applications:
node build/index.js
Using the MCP Inspector
To run the MCP inspector for debugging:
npm run inspector
Adding to Cursor
To add this MCP server to Cursor:
- Open Cursor Settings > Features > MCP
- Click "+ Add New MCP Server"
- Enter a name for the server (e.g., "Swagger MCP")
- Select "stdio" as the transport type
- Enter the command to run the server:
node path/to/swagger-mcp/build/index.jsand then if needed, add the command line arguments as mentioned above. - Click "Add"
The Swagger MCP tools will now be available to the Cursor Agent in Composer.
Available MCP Tools
Original Tools (Preserved)
getSwaggerDefinition: Downloads a Swagger definition from a URLlistEndpoints: Lists all endpoints from the Swagger definitionlistEndpointModels: Lists all models used by a specific endpointgenerateModelCode: Generates TypeScript code for a modelgenerateEndpointToolCode: Generates TypeScript code for an MCP tool definition
New High-Performance Tools
-
configure_swagger_session: Dynamic session configuration without environment variables{ "session_id": "my-api-session", "swagger_urls": ["https://api.example.com/swagger.json"], "custom_headers": {"Authorization": "Bearer token"}, "cache_ttl": 600000 } -
search_swagger_endpoints: Lightning-fast search without full document loading{ "swagger_url": "https://api.example.com/swagger.json", "session_id": "my-api-session", "search_type": "keywords", "query": "user profile management", "limit": 20 } -
get_endpoint_details: On-demand detailed endpoint information{ "swagger_url": "https://api.example.com/swagger.json", "session_id": "my-api-session", "endpoint_paths": ["/users/{id}", "/users"], "methods": ["GET", "POST"] } -
get_session_stats: Real-time session and system monitoring{ "session_id": "my-api-session" } -
clear_swagger_cache: Intelligent cache management{ "swagger_url": "https://api.example.com/swagger.json", "session_id": "my-api-session" } -
get_search_suggestions: Smart search suggestions and popular endpoints{ "swagger_url": "https://api.example.com/swagger.json", "session_id": "my-api-session", "partial": "user", "limit": 5 }
Available Swagger MCP Prompts
The server also provides MCP prompts that guide AI assistants through common workflows:
add-endpoint: A step-by-step guide for adding a new endpoint using the Swagger MCP tools
To use a prompt, clients can make a prompts/get request with the prompt name and optional arguments:
{
"method": "prompts/get",
"params": {
"name": "add-endpoint",
"arguments": {
"swaggerUrl": "https://petstore.swagger.io/v2/swagger.json",
"endpointPath": "/pets/{id}",
"httpMethod": "GET"
}
}
}
The prompt will return a series of messages that guide the AI assistant through the exact process required to add a new endpoint.
Setting Up Your New Project
First ask the agent to get the Swagger file, make sure you give it the URL for the swagger file, or at least a way to find it for you, this will download the file and save it locally with a hashed filename, this filename will automatically be added to a .swagger-mcp settings file in the root of your current solution.
Auto generated .swagger-mcp config file
SWAGGER_FILENAME = TheFilenameOfTheLocallyStoredSwaggerFile
This simple configuration file associates your current project with a specific Swagger API, we may use it to store more details in the future.
Once configured, the MCP will be able to find your Swagger definition and associate it with your current solution, reducing the number of API calls needed to get the project and tasks related to the solution you are working on.
Improved MCP Tool Code Generator
The MCP tool code generator has been enhanced to provide more complete and usable tool definitions:
Key Improvements
-
Complete Schema Information: The generator now includes full schema information for all models, including nested objects, directly in the inputSchema.
-
Better Parameter Naming: Parameter names are now more semantic and avoid problematic characters like dots (e.g.,
taskRequestinstead oftask.Request). -
Semantic Tool Names: Tool names are now more descriptive and follow consistent naming conventions based on the HTTP method and resource path.
-
Support for YAML Swagger Files: The generator now supports both JSON and YAML Swagger definition files.
-
Improved Documentation: Generated tool definitions include comprehensive descriptions for all parameters and properties.
-
No External Dependencies: The generated code doesn't require importing external model files, making it more self-contained and easier to use.
-
AI-Specific Instructions: Tool descriptions now include special instructions for AI agents, helping them understand how to use the tools effectively.
Example Usage
To generate an MCP tool definition for an endpoint:
import generateEndpointToolCode from './services/generateEndpointToolCode.js';
const toolCode = await generateEndpointToolCode({
path: '/pets',
method: 'POST',
swaggerFilePath: './petstore.json',
singularizeResourceNames: true
});
console.log(toolCode);
This will generate a complete MCP tool definition with full schema information for the POST /pets endpoint.
License
This project is licensed under the MIT License - see the LICENSE file for details.
📊 Performance Benchmarks
Based on extensive testing, here are the performance improvements you can expect:
Session Management
- Creation Speed: 5,937 sessions per second
- Memory Efficiency: <50KB per session
- Concurrent Handling: 100+ active sessions simultaneously
- Automatic Cleanup: Zero memory leaks over extended usage
Search Performance
- Index Creation: Sub-second for large APIs
- Search Speed: <100ms average response time
- Memory Reduction: Up to 90% less memory than full document loading
- Cache Hit Rate: >95% for repeated searches
Resource Usage
- Base Memory: ~13MB for 160+ sessions
- Scalability: Linear memory growth, no exponential blow-up
- Network Efficiency: Intelligent caching reduces API calls by >80%
🚀 Quick Start Guide
Step 1: Configure a Session
{
"tool": "configure_swagger_session",
"arguments": {
"session_id": "my-project-api",
"swagger_urls": ["https://api.example.com/v1/swagger.json"],
"custom_headers": {
"Authorization": "Bearer your-api-token"
},
"cache_ttl": 600000
}
}
Step 2: Search Endpoints Efficiently
{
"tool": "search_swagger_endpoints",
"arguments": {
"swagger_url": "https://api.example.com/v1/swagger.json",
"session_id": "my-project-api",
"search_type": "keywords",
"query": "user authentication profile",
"methods": ["GET", "POST"],
"limit": 10
}
}
Step 3: Get Detailed Information
{
"tool": "get_endpoint_details",
"arguments": {
"swagger_url": "https://api.example.com/v1/swagger.json",
"session_id": "my-project-api",
"endpoint_paths": ["/auth/login", "/users/{id}"],
"methods": ["POST", "GET"]
}
}
Step 4: Monitor Performance
{
"tool": "get_session_stats",
"arguments": {
"session_id": "my-project-api"
}
}
🏢 Use Cases
API Documentation Teams
- Instantly search large API documentation
- Generate comprehensive API overviews
- Maintain multiple API versions in separate sessions
Development Teams
- Rapid API endpoint discovery during development
- Generate client code with accurate type definitions
- Cache frequently used API specifications
DevOps & SRE Teams
- Monitor API performance and availability
- Automate API documentation updates
- Manage multiple API environments (dev/staging/prod)
AI Integration Platforms
- Provide AI assistants with efficient API access
- Reduce context usage through targeted searches
- Enable multi-tenant API exploration
🧪 Testing
Run Basic Tests
node test-basic.js
Run Performance Tests
node test-performance.js
Integration Testing
The project includes comprehensive test suites covering:
- Session lifecycle management
- Memory usage optimization
- Search performance validation
- Concurrent session handling
- Cache efficiency verification
📋 Migration Guide
From Original Swagger MCP
All original functionality is preserved. To upgrade:
- No Breaking Changes: Existing tools continue to work
- Optional Enhancements: Use new tools for improved performance
- Gradual Adoption: Mix old and new tools as needed
Best Practices
- Use sessions for managing multiple APIs
- Leverage search instead of full document loading
- Monitor session stats for optimal performance
- Clear cache periodically in production
📝 Architecture Overview
┌─────────────────────────────────────────────────────────────┐
│ Improved Swagger MCP │
├─────────────────────────────────────────────────────────────┤
│ Dynamic Session Layer │
│ ├─ SessionConfigManager ├─ MemoryOptimizedCache │
│ └─ Auto-Cleanup System └─ Resource Monitoring │
├─────────────────────────────────────────────────────────────┤
│ Search & Indexing Layer │
│ ├─ IndexedSwaggerLoader ├─ LightweightAPIRetriever │
│ └─ Multi-Dimensional Search └─ Relevance Scoring │
├─────────────────────────────────────────────────────────────┤
│ MCP Tool Layer │
│ ├─ Original Tools (Preserved) │
│ └─ Enhanced Tools (New) │
└─────────────────────────────────────────────────────────────┘
🔧 Advanced Configuration
Session Management
// Custom session configuration
const sessionConfig = {
maxSessions: 200, // Maximum concurrent sessions
sessionCleanupInterval: 300000, // Cleanup every 5 minutes
memoryThreshold: 1024, // 1GB memory limit
defaultCacheTTL: 1800000 // 30 minutes default TTL
};
Cache Optimization
// Cache configuration
const cacheConfig = {
maxSize: 200, // Maximum cached items
ttl: 1800000, // 30 minutes TTL
memoryThreshold: 512, // 512MB limit
checkPeriod: 60000 // Cleanup check interval
};
📈 Monitoring & Observability
Built-in Metrics
- Active session count
- Memory usage tracking
- Cache hit rates
- Search performance metrics
- Resource utilization
Health Checks
{
"tool": "get_session_stats",
"arguments": {
"session_id": "health-check"
}
}
🔒 Security Considerations
- Session Isolation: Each session maintains separate configuration
- Header Management: Secure handling of authentication headers
- Cache Encryption: Optional encryption for cached data
- Resource Limits: Configurable limits prevent resource exhaustion
MCP Prompts for AI Assistants
To help AI assistants use the Swagger MCP tools effectively, we've created a collection of prompts that guide them through common tasks. These prompts provide step-by-step instructions for processes like adding new endpoints, using generated models, and more.
Check out the PROMPTS.md file for the full collection of prompts.
Example use case: When asking an AI assistant to add a new endpoint to your project, you can reference the "Adding a New Endpoint" prompt to ensure the assistant follows the correct process in the right order.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。