Swarms MCP Documentation Server
An Agent Framework Documentation server that enables AI agents to efficiently retrieve information from documentation databases using hybrid semantic and keyword search for seamless agent integration.
README
🐝 Swarms MCP Documentation Server
<p align="center"> <img src="https://img.shields.io/badge/Windsurf_Ready-✅-orange" alt="IDE Ready"> <img src="https://img.shields.io/badge/Error_Tolerant-✅-green" alt="Error Tolerant"> <img src="https://img.shields.io/badge/Dynamic_MD_Loader-✅-blue" alt="Dynamic MD Loader"> <img src="https://img.shields.io/badge/Healthcheck_Tool-✅-success" alt="Healthcheck Tool"> <img src="https://img.shields.io/badge/Smart_Load_Logs-✅-purple" alt="Smart Load Logs"> </p>
📖 Description
This program is an Agent Framework Documentation MCP Server built on FastMCP, designed to enable AI agents to efficiently retrieve information from your documentation database. It combines hybrid semantic (vector) and keyword (BM25) search, chunked indexing, and a robust FastMCP tools API for seamless agent integration.
Key Capabilities:
- Efficient, chunk-level retrieval using both semantic and keyword search
- Agents can query, list, and retrieve documentation using FastMCP tools
- Local-first, low-latency design (all data indexed and queried locally)
- Automatic reindexing on file changes
- Modular: add any repos to
corpora/, support for all major filetypes - Extensible: add new tools, retrievers, or corpora as needed
Main modules:
embed_documents.py→ Loads, chunks, and embeds documentsswarms_server.py→ Brings up the MCP server and FastMCP tools
🌟 Key Features
- Hybrid Retriever 🔍: Combines semantic and keyword search.
- Dynamic Markdown Handling 📄: Smart loader based on file size.
- Specialized Loaders ⚙️:
.py,.ipynb,.md,.txt,.yaml,.yml. - Chunk and File Summaries 📈: Displays chunk counts along with file counts.
- Live Watchdog 🔥: Instantly responds to any changes in
corpora/. - User Confirmation for Costs ✅: Confirms before expensive embeddings.
- Healthcheck Endpoint 🚑: Ensure server is ready for use.
- Local-First 🗂️: All repos indexed locally without external dependencies.
- Safe Deletion Helper 🔥: Auto-delete broken/mismatched indexes.
🏗️ Version History
| Version | Date | Highlights |
|---|---|---|
| 2.2 | 2025‑04‑25 | Split embed/load from server; full chunk counting in loading summaries |
| 1.0 | 2025‑04‑25 | Dynamic Markdown loader, color logs, Healthcheck tool |
| 0.7 | 2025‑04‑25 | Specialized file loaders for .py, .ipynb, .md |
| 0.5 | 2025‑04‑10 | OpenAI large model embeddings, extended MCP tools |
| 0.1 | 2025‑04‑10 | Initial version with generic loaders |
📚 Managing Your Corpora (Local Repos)
Because Swarms and other frameworks are very large, full corpora are not pushed to GitHub.
Instead, you clone them manually under corpora/:
# Inside your project folder:
cd corpora/
# Clone useful frameworks:
git clone https://github.com/SwarmsAI/Swarms
git clone https://github.com/SwarmsAI/Swarms-Examples
git clone https://github.com/microsoft/autogen
git clone https://github.com/langchain-ai/langgraph
git clone https://github.com/openai/openai-agent-sdk
✅ Notes:
- Add any repo — public, private, custom.
- Build your own custom AI knowledge base locally.
- Large repos (>500MB) are fine; all indexing is local.
🚀 Quick Start
# 1. Activate virtual environment
venv\Scripts\Activate.ps1
# 2. Install all dependencies
pip install -r requirements.txt
# 3. Configure OpenAI API Key
echo OPENAI_API_KEY=sk-... > .env
# 4. (Load and embed documents
python embed_documents.py
# 5. Start MCP server
python swarms_server.py
# If no index is found, the server will prompt you to embed documents automatically.
⚙️ Configuration
- Corpus: Drop repos inside
corpora/ - Environment Variables:
.envmust containOPENAI_API_KEY
- Index File Support:
- Both
chroma-collections.parquetandchroma.sqlite3are supported..parquetis preferred if both exist.
- Both
- Auto-Embedding:
- If no index is found, the server will prompt you to embed and index your documents automatically.
- Optional:
- Disable Chroma compaction if you prefer:
setx CHROMA_COMPACTION_SERVICE__COMPACTOR__DISABLED_COLLECTIONS "swarms_docs"
- Disable Chroma compaction if you prefer:
- Command-Line Flags:
--reindex→ trigger a refresh reindex during server run.
🔄 File Watching & Auto Reindexing
The MCP Server watches corpora/ for any file changes:
- Any modification, creation, or deletion triggers a live reindex.
- No need to restart the server.
🛠️ Available FastMCP Tools
| Tool | Description |
|---|---|
swarm_docs.search |
Search relevant documentation chunks |
swarm_docs.list_files |
List all indexed files |
swarm_docs.get_chunk |
Get a specific chunk by path and index |
swarm_docs.reindex |
Force reindex (full or incremental) |
swarm_docs.healthcheck |
Check MCP Server status |
❓ Troubleshooting
- Q: I get 'No valid existing index found' when starting the server.
- A: The server will now prompt you to embed and index documents. Accept the prompt to proceed, or run
python embed_documents.pymanually first.
- A: The server will now prompt you to embed and index documents. Accept the prompt to proceed, or run
- Q: Which index file is used?
- A: The server will use
chroma-collections.parquetif available, otherwisechroma.sqlite3.
- A: The server will use
- Q: I want to force a reindex.
- A: Run
python swarms_server.py --reindexor use theswarm_docs.reindextool.
- A: Run
📋 Example Usage
# Search the documentation
result = swarm_docs.search("How do I load a notebook?")
print(result)
# List all available files
files = swarm_docs.list_files()
print(files)
# Get a specific document chunk
chunk = swarm_docs.get_chunk(path="examples/agent.py", chunk_idx=2)
print(chunk["content"])
🧰 Extending & Rebuilding
-
Add new docs → drop into
corpora/, then:python swarms_server.py --reindex -
Schema changes → (e.g. different metadata structure):
python swarms_server.py --reindex --full -
Add new repo → Drop folder under
corpora/, reindex. -
Recommended for mostly read-only repos:
setx CHROMA_COMPACTION_SERVICE__COMPACTOR__DISABLED_COLLECTIONS "swarms_docs"
🔗 IDE Integration
Plug directly into Windsurf Cascade:
"swarms": {
"command": "C:/…/Swarms/venv/Scripts/python.exe",
"args": ["swarms_server.py"]
}
Then you can access swarm_docs.* tools from Cascade automations.
📦 Requirements
💡 Python 3.11 Environment Required
Create your environment explicitly:
python3.11 -m venv venv
Then install with:
pip install -r requirements.txt
✅ MCP Server Ready
After boot:
- Proper loading summaries
- Safe confirmation before expensive actions
- Auto file watching and reindexing
- Windsurf plug-in ready
- Full tool coverage
You're good to cascade it! 🏄♂️
📈 Flow Diagram
+------------------+
| 🖥️ MCP Server |
+------------------+
|
+---------------------------------------------------+
| |
+-------------+ +-----------------+
| 📁 Corpora | | 🔎 FastMCP Tools |
| Folder | | (search, list, |
| (markdown, | | get_chunk, etc.) |
| code, etc) | +-----------------+
+-------------+ |
| |
+-----------------+ +----------------+
| 📚 Loaders | | 🧠 Ensemble |
| (Python, MD, TXT)| | Retriever (BM25|
| Split into Chunks| | + Chroma) |
+-----------------+ +----------------+
| |
+-----------------+ +----------------+
| ✂️ Text Splitter | | 🧩 Similarity |
| (RecursiveCharacter) | | Search (chunks) |
+-----------------+ +----------------+
| |
+-----------------+ +----------------+
| 💾 Embed chunks | —OpenAI Embedding (small)—> | 🛢️ Chroma Vector |
| via OpenAI API | | DB (Local Store) |
+-----------------+ +----------------+
| |
+-----------------+ +----------------+
| 📡 Reindex Watcher| | 👀 File Watchdog |
| (Auto detect | | (Auto reindex |
| new/modified files| | on file events) |
+-----------------+ +----------------+
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。