System Designer MCP Server

System Designer MCP Server

Enables AI agents to create, validate, and export UML system models using structured MSON format. Supports generating PlantUML and Mermaid diagrams with direct export to System Designer macOS application.

Category
访问服务器

README

System Designer MCP Server

A Model Context Protocol (MCP) server that provides AI agents with tools to create, validate, and export UML system models. Built with a tool-based approach that empowers LLMs rather than trying to replace their natural language understanding capabilities.

📚 Documentation

Features

Core Tools

  • create_mson_model: Create and validate MSON models from structured data
  • validate_mson_model: Validate MSON model consistency and completeness
  • generate_uml_diagram: Generate UML diagrams in PlantUML and Mermaid formats
  • export_to_system_designer: Export models to System Designer application format

Key Capabilities

  • Tool-Based Architecture: LLMs handle understanding, server handles validation/formatting
  • Type Safety: Comprehensive Zod schema validation for all inputs and outputs
  • Multiple UML Formats: Support for both PlantUML and Mermaid diagram generation
  • System Designer Integration: Direct export to System Designer macOS application
  • Comprehensive Testing: Full test coverage for all tools and functionality

Installation

Prerequisites

  • Bun JavaScript runtime
  • Node.js compatibility through Bun

Setup

# Clone the repository
git clone <repository-url>
cd system-designer-mcp

# Install dependencies
bun install

# Build the project
bun run build

# Run tests
bun test

Quick Start

Installation

# Clone the repository
git clone <repository-url>
cd system-designer-mcp

# Install dependencies
bun install

# Build the project
bun run build

# Run tests
bun test

Using the MCP Server

  1. Start the server:
bun run dev
  1. Example tool usage:
// Create a MSON model
const model = await mcpClient.callTool('create_mson_model', {
  name: 'Student Management System',
  type: 'class',
  description: 'A system for managing students and courses',
  entities: [
    {
      id: 'student',
      name: 'Student',
      type: 'class',
      attributes: [
        { name: 'id', type: 'string', visibility: 'private' },
        { name: 'name', type: 'string', visibility: 'public' },
      ],
      methods: [{ name: 'enroll', returnType: 'void', visibility: 'public' }],
    },
  ],
  relationships: [],
});

// Generate UML diagram
const diagram = await mcpClient.callTool('generate_uml_diagram', {
  model: model.content[1].json,
  format: 'plantuml',
});

// Export to System Designer
const exported = await mcpClient.callTool('export_to_system_designer', {
  model: model.content[1].json,
  filePath: './student_system.json',
});

CLI Usage

The server includes a CLI tool for testing and model management:

# Test System Designer integration
bun run src/cli.ts test-integration

# Export a test model
bun run src/cli.ts export-model MyModel "Test model description"

# Show configuration
bun run src/cli.ts config

See the CLI Guide for detailed usage instructions.

Example MSON Model Structure

{
  "id": "student_system",
  "name": "Student Management System",
  "type": "class",
  "description": "A system for managing students and courses",
  "entities": [
    {
      "id": "student",
      "name": "Student",
      "type": "class",
      "attributes": [
        {
          "name": "id",
          "type": "string",
          "visibility": "private"
        },
        {
          "name": "name",
          "type": "string",
          "visibility": "public"
        }
      ],
      "methods": [
        {
          "name": "enroll",
          "parameters": [
            {
              "name": "course",
              "type": "Course"
            }
          ],
          "returnType": "void",
          "visibility": "public"
        }
      ]
    }
  ],
  "relationships": [
    {
      "id": "enrollment",
      "from": "student",
      "to": "course",
      "type": "association",
      "multiplicity": {
        "from": "1",
        "to": "0..*"
      },
      "name": "enrolls in"
    }
  ]
}

Tool Reference

For detailed API documentation, see the API Reference.

Available Tools

  • create_mson_model - Create and validate MSON models from structured data
  • validate_mson_model - Validate MSON model consistency and completeness
  • generate_uml_diagram - Generate UML diagrams in PlantUML and Mermaid formats
  • export_to_system_designer - Export models to System Designer application format

Platform Integration

The server can be integrated with various platforms:

  • Claude Desktop - Native MCP integration
  • VS Code - Extension development support
  • Web Applications - React/Node.js integration
  • CLI Tools - Command-line interface

See the Integration Guide for detailed setup instructions.

Architecture

Tool-Based Approach

This server uses a tool-based architecture that:

  1. Empowers LLMs: The LLM handles understanding requirements and creating structured data
  2. Validates Input: Server validates structured input using comprehensive Zod schemas
  3. Processes Efficiently: Simple, fast processing without complex parsing logic
  4. Exports Flexibly: Multiple output formats for different use cases

Benefits Over Parser-Based Approaches

  • Simplicity: No complex NLP parsing to maintain
  • Flexibility: Works with any domain the LLM understands
  • Reliability: Fewer moving parts, less error-prone
  • Performance: Faster validation and processing
  • Extensibility: Easy to add new tools and features

Development

Running Tests

# Run all tests
bun test

# Run tests in watch mode
bun test --watch

Building

# Build for production
bun run build

# Start production server
bun start

Code Structure

src/
├── index.ts                    # Main MCP server with all tools
├── cli.ts                      # Command-line interface
└── integration/
    └── system-designer.ts     # System Designer app integration

test/
└── tool-based.test.ts         # Comprehensive test suite

docs/
├── API-REFERENCE.md           # Detailed API documentation
├── CLI-GUIDE.md              # CLI usage guide
└── INTEGRATION-GUIDE.md      # Platform integration guide

examples/
├── banking-system.json        # Sample banking system model
├── banking-system-plantuml.puml  # PlantUML output example
├── banking-system-mermaid.md  # Mermaid output example
└── README.md                  # Example documentation

Integration with System Designer

The server exports models in a format compatible with the System Designer macOS application:

  1. File Export: Models are saved as JSON files
  2. Automatic Integration: Files can be imported directly into System Designer
  3. Format Compatibility: Uses MSON (Metamodel JavaScript Object Notation) format

Contributing

This project follows a simple contribution model:

  1. Fork the repository
  2. Create a feature branch
  3. Add tests for new functionality
  4. Ensure all tests pass
  5. Submit a pull request

License

MIT License - see LICENSE file for details.

Acknowledgments

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选