System Information MCP Server

System Information MCP Server

Provides comprehensive system diagnostics and hardware analysis through 10 specialized tools for troubleshooting and environment monitoring. Offers targeted information gathering for CPU, memory, network, storage, processes, and security analysis across Windows, macOS, and Linux platforms.

Category
访问服务器

README

System Information MCP Server

A modular FastMCP server providing focused system diagnostic tools for efficient troubleshooting and environment analysis. Each tool targets specific system aspects for optimal performance and clarity.

🚀 Features

📊 Modular Tool Design

  • 10 specialized tools for targeted diagnostics
  • Efficient data collection with minimal overhead
  • Raw text output for optimal performance
  • Cross-platform compatibility (macOS, Linux, Windows)

🔧 Available Tools

Tool Purpose Key Information
get_system_summary Quick system overview Hostname, OS, CPU, RAM, uptime
get_hardware_details Comprehensive hardware specs CPU cores, memory, GPU detection
get_display_info Display/monitor analysis Resolution, refresh rate, HDR status
get_network_status Network diagnostics Interfaces, IPs, DNS, VPN detection
get_storage_analysis Storage overview Disk usage, partitions, filesystem types
get_connected_devices Peripheral inventory USB and Bluetooth devices
get_user_environment Session context User info, timezone, locale settings
get_running_processes Process analysis Top processes by CPU/memory usage
get_open_ports Network security Listening ports and services
get_full_system_report Complete analysis All diagnostics in one comprehensive report

Installation

# Clone and setup
git clone <repository>
cd mcp-sysinfo

# Install dependencies
uv add fastmcp psutil requests

# Test the server
uv run python main.py

Usage

MCP Configuration

Add to your MCP client configuration:

Local/stdio Configuration

{
  "mcpServers": {
    "sysinfo": {
      "type": "stdio",
      "command": "uv",
      "args": ["run", "--directory", "/path/to/mcp-sysinfo", "python", "main.py"]
    }
  }
}

Remote/HTTP Configuration

{
  "mcpServers": {
    "sysinfo": {
      "type": "http",
      "url": "http://localhost:8000/mcp/"
    }
  }
}

For HTTP mode, set the PORT environment variable:

PORT=8000 uv run python main.py

Tool Usage Examples

Quick System Check

# Get essential system overview
result = await client.call_tool("get_system_summary", {})

Targeted Diagnostics

# Network troubleshooting
network_info = await client.call_tool("get_network_status", {})

# Storage analysis
storage_info = await client.call_tool("get_storage_analysis", {})

# Security audit
ports_info = await client.call_tool("get_open_ports", {})

Complete System Analysis

# Full diagnostic report
full_report = await client.call_tool("get_full_system_report", {})

Platform Support

  • macOS 10.15+ (tested on Apple Silicon)
  • Linux Ubuntu/Debian-based distributions
  • Windows 10/11 (basic support)

Architecture

src/sysinfo/
├── __init__.py          # Package exports
├── collectors.py        # Modular info collection functions
└── server.py           # FastMCP server implementation
main.py                 # Entry point

Key Design Principles

  • Modular Tools: Each diagnostic function is a separate MCP tool for targeted usage
  • Performance Optimized: Raw text output without JSON wrapping overhead
  • Error-resilient: Graceful handling of missing/inaccessible data
  • Cross-platform: Platform-specific detection with intelligent fallbacks
  • Agent-friendly: Clean markdown output optimized for LLM consumption
  • Minimal Dependencies: Uses only fastmcp, psutil, and requests

Development

Testing

# Test with in-memory client
uv run python test_refactored.py

# Test individual collectors
uv run python -c "from src.sysinfo.collectors import get_hardware_info; print(get_hardware_info())"

Adding New Collectors

  1. Add function to collectors.py
  2. Export in __init__.py
  3. Call from server.py tool
  4. Test cross-platform compatibility

License

MIT License - see LICENSE file for details.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选