Taboola API MCP Server

Taboola API MCP Server

A flexible MCP server that enables users to fetch recommendations from the Taboola API using publisher credentials, supporting both local (STDIO) and remote (HTTP) deployment modes.

Category
访问服务器

README

Taboola API MCP Server

A flexible MCP (Model Context Protocol) server with fetchRecommendations functionality. Supports both local (STDIO) and remote (HTTP) deployment modes.

Setup

  1. Install dependencies:
pip install -r requirements.txt
  1. Activate virtual environment (if using one):
source .venv/bin/activate

Deployment Options

Local Mode (STDIO Transport)

Perfect for local development and testing with MCP Inspector:

# Default mode - runs locally with STDIO transport
python server.py

# Explicitly specify local mode
python server.py --mode local

Remote Mode (HTTP Server)

Deploy as a remote HTTP server accessible over the network:

# Run as HTTP server on default port 8000
python server.py --mode remote

# Specify custom host and port
python server.py --mode remote --host 0.0.0.0 --port 3000

# Using environment variables
export MCP_MODE=remote
export MCP_HOST=0.0.0.0
export MCP_PORT=8000
python server.py

Configuration Options

Command Line Arguments

  • --mode: Server mode (local or remote) - default: local
  • --host: Host to bind to in remote mode - default: 0.0.0.0
  • --port: Port to bind to in remote mode - default: 8000

Environment Variables

  • MCP_MODE: Server mode (local or remote)
  • MCP_HOST: Host to bind to in remote mode
  • MCP_PORT: Port to bind to in remote mode

Environment variables override command line arguments.

Functions

fetchRecommendations

Fetches recommendations for a given publisher using their API key via Taboola API.

Parameters:

  • publisher_name (str): The name of the publisher
  • api_key (str): The API key for authentication

Returns:

  • str: JSON recommendations data from Taboola API

Usage Examples

Local Development with MCP Inspector

# Start server locally
python server.py

# In another terminal, run MCP Inspector
npx @modelcontextprotocol/inspector python server.py

Remote Deployment

# Deploy as remote server
python server.py --mode remote --port 8000

# Server will be available at: http://your-server-ip:8000
# Connect using HTTP transport with MCP clients

Production Deployment

For production, consider using environment variables:

export MCP_MODE=remote
export MCP_HOST=0.0.0.0
export MCP_PORT=8000
python server.py

Or with a process manager like PM2:

pm2 start server.py --name "taboola-mcp" -- --mode remote --port 8000

Testing

Use the provided test script to verify functionality:

# Edit test_function.py with your credentials
python test_function.py

Cloud Deployment

Render Deployment

Deploy easily on Render cloud platform:

Option 1: Using Render.yaml (Recommended)

  1. Push your code to GitHub/GitLab

  2. Connect to Render:

    • Go to Render Dashboard
    • Click "New" > "Blueprint"
    • Connect your repository
    • The render.yaml file will be automatically detected
  3. Deploy:

    • Render will automatically build and deploy your MCP server
    • Your server will be available at: https://your-app-name.onrender.com

Option 2: Manual Render Setup

  1. Create a new Web Service on Render

  2. Connect your repository

  3. Configure the service:

    • Build Command: pip install -r requirements.txt
    • Start Command: python server.py --mode remote --host 0.0.0.0 --port $PORT
    • Environment Variables:
      • MCP_MODE=remote
      • MCP_HOST=0.0.0.0
      • PYTHON_VERSION=3.13.0
  4. Deploy and get your URL

Docker Deployment

For any Docker-compatible platform:

# Build and run locally
docker build -t taboola-mcp-server .
docker run -p 8000:8000 taboola-mcp-server

# Or use docker-compose
docker-compose up -d

Other Cloud Platforms

The server is compatible with:

  • Heroku: Use Procfile with web: python server.py --mode remote --port $PORT
  • Railway: Deploy directly from GitHub with automatic detection
  • DigitalOcean App Platform: Use the provided docker-compose.yml
  • AWS/GCP/Azure: Deploy using Docker or direct Python deployment

Security Notes

  • In remote mode, the server binds to 0.0.0.0 by default (all interfaces)
  • Consider using a reverse proxy (nginx, Apache) for production deployments
  • Ensure proper firewall rules are in place for remote access
  • API keys are passed as parameters - ensure secure transmission (HTTPS recommended)
  • Cloud platforms like Render automatically provide HTTPS endpoints

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选