Tarantella Slack MCP Server
Enables AI assistants to search Slack messages and channels using the Slack Web API, with filtering options by user, date, channel, and content type.
README
Tarantella MCPs - Slack MCP Server
A Model Context Protocol (MCP) server implementation that provides Slack search capabilities to Claude and other MCP clients.
Overview
This MCP server enables AI assistants to search Slack messages and channels using the Slack Web API. It provides two main tools:
- search-messages: Search across all accessible Slack messages
- search-in-channel: Search within a specific Slack channel
Prerequisites
- Node.js v22 or later (see
.nvmrc) - A Slack workspace with API access
- A Slack Bot Token with appropriate permissions
Slack Setup
1. Create a Slack App
- Go to https://api.slack.com/apps
- Click "Create New App" and choose "From scratch"
- Give your app a name (e.g., "MCP Search Bot") and select your workspace
- Click "Create App"
2. Configure OAuth Scopes
- Navigate to "OAuth & Permissions" in the sidebar
- Under "Bot Token Scopes", add the following scopes:
search:read- Search workspace contentchannels:read- View basic channel informationgroups:read- View basic private channel informationim:read- View basic direct message informationmpim:read- View basic group direct message information
3. Install App to Workspace
- Scroll to "OAuth Tokens for Your Workspace"
- Click "Install to Workspace"
- Authorize the app
- Copy the "Bot User OAuth Token" (starts with
xoxb-)
4. Set Environment Variable
Export your token as an environment variable:
export SLACK_BOT_TOKEN="xoxb-your-token-here"
Or create a .env file (not committed to git):
SLACK_BOT_TOKEN=xoxb-your-token-here
PORT=3000
Installation
# Install dependencies
npm install
# Run development server with hot reload
npm run dev
# Build for production
npm run build
# Run production server
npm start
Environment Variables
| Variable | Required | Default | Description |
|---|---|---|---|
SLACK_BOT_TOKEN |
Yes | - | Slack Bot User OAuth Token (starts with xoxb-) |
PORT |
No | 3000 | Port number for the HTTP server |
Available MCP Tools
1. search-messages
Search across all accessible Slack messages in your workspace.
Parameters:
query(required): Search query stringlimit(optional): Number of results to return (1-100, default: 20)from_user(optional): Filter by user IDin_channel(optional): Filter by channel IDafter(optional): Filter messages after this date (YYYY-MM-DD)before(optional): Filter messages before this date (YYYY-MM-DD)exclude_bots(optional): Exclude messages from bots (boolean)has_attachments(optional): Only messages with attachments (boolean)has_links(optional): Only messages with links (boolean)
Example:
{
"query": "bug fix",
"limit": 10,
"exclude_bots": true,
"after": "2024-01-01"
}
2. search-in-channel
Search messages within a specific Slack channel.
Parameters:
channel_id(required): Slack channel ID (e.g., C1234567890)query(required): Search query stringlimit(optional): Number of results to return (1-100, default: 20)from_user(optional): Filter by user IDafter(optional): Filter messages after this date (YYYY-MM-DD)before(optional): Filter messages before this date (YYYY-MM-DD)exclude_bots(optional): Exclude messages from bots (boolean)
Example:
{
"channel_id": "C1234567890",
"query": "deployment",
"limit": 5
}
MCP Client Configuration
Claude Desktop
Add this to your Claude Desktop configuration (~/Library/Application Support/Claude/claude_desktop_config.json on macOS):
{
"mcpServers": {
"slack": {
"url": "http://localhost:3000/mcp/slack/sse",
"env": {
"SLACK_BOT_TOKEN": "xoxb-your-token-here"
}
}
}
}
Other MCP Clients
Connect to the SSE endpoint:
http://localhost:3000/mcp/slack/sse
Development
Code Quality
# Format and lint code
npm run check
# Type checking only
npm run typecheck
# Linting only
npm run lint
# Format only
npm run format
Testing
# Run tests (watch mode)
npm test
# Run tests with UI
npm run test:ui
# Run tests with coverage (80% threshold)
npm run test:coverage
# Run mutation testing (74% threshold)
npm run test:mutation
CI Pipeline
Run the full continuous integration pipeline:
npm run ci
This runs:
- TypeScript type checking
- Biome linting
- Unit tests
- Mutation tests
Project Structure
src/
├── mcps/
│ └── slack/
│ ├── __tests__/ # Integration tests
│ ├── services/ # Slack API client
│ │ ├── __tests__/
│ │ └── slack-client.ts
│ ├── tools/ # MCP tool implementations
│ │ ├── __tests__/
│ │ ├── search-messages.ts
│ │ └── search-in-channel.ts
│ └── index.ts # MCP server setup
├── shared/
│ ├── __tests__/
│ ├── config.ts # Environment validation
│ └── types.ts # Shared TypeScript types
└── server.ts # HTTP server entry point
Technology Stack
- Runtime: Node.js v22
- Language: TypeScript 5.6+ (ESM modules)
- MCP SDK: @modelcontextprotocol/sdk v1.25.1
- Web Framework: Express v5.2.1
- Validation: Zod v4.2.1
- Testing: Vitest 2.x
- Linter/Formatter: Biome 2.x
- Mutation Testing: Stryker 8.x
License
See LICENSE file for details.
Contributing
- Follow the TypeScript strictness guidelines in
CLAUDE.md - Write tests for all new features (80% coverage minimum)
- Run
npm run cibefore committing - Use named exports only (no default exports)
- Extract magic numbers to named constants
- Use bracket notation for
process.envaccess
Troubleshooting
"SLACK_BOT_TOKEN environment variable is required" error
Make sure you've set the SLACK_BOT_TOKEN environment variable:
export SLACK_BOT_TOKEN="xoxb-your-token-here"
Search returns no results
- Verify your bot token has the
search:readscope - Ensure the bot has been added to channels you want to search
- Check that your search query matches actual message content
API rate limiting
Slack has rate limits on API calls. If you hit rate limits:
- Reduce the search frequency
- Use more specific queries
- Implement caching (not currently included)
Connection issues
If the MCP client can't connect:
- Verify the server is running:
curl http://localhost:3000/ - Check the port matches your configuration
- Review server logs for error messages
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。