Task Manager MCP

Task Manager MCP

Enables intelligent task management with status tracking, dependency resolution, and automatic next task discovery based on preconditions and priorities. Supports hierarchical task structures with subtasks and flexible JSON-based configuration.

Category
访问服务器

README

task-manager-mcp

中文版 README | English README

A lightweight MCP (Model Context Protocol) server for task management with intelligent status tracking and next task discovery based on preconditions.

Features

  • Task Status Management: Set and track task status with support for subtasks
  • Smart Task Discovery: Find the next executable task based on priorities and dependencies
  • Precondition Checking: Automatic validation of task dependencies before execution
  • Flexible Configuration: Configure via task JSON files with customizable structure
  • Standalone: No external dependencies, ready for independent deployment

Quick Start

⚠️ Important: /task-manager-mcp:get-task-rules (MCP) is the main entry point for the entire MCP system to function properly. Start with this prompt to get comprehensive guidance for all task management operations.

Installation

git clone https://github.com/localSummer/task-manager-mcp.git

MCP Client Configuration

Cursor IDE Configuration

Add the following configuration to your .cursor/mcp.json file:

{
  "mcpServers": {
    "task-manager": {
      "command": "node",
      "args": ["/absolute/task-manager-mcp/src/index.mjs"],
      "env": {
        "TASK_CONFIG_PATH": "/absolute/path/to/your/tasks.json"
      }
    }
  }
}

Task Configuration Format

Your task configuration file should follow this structure:

{
  "meta": {
    "projectName": "My Project", // Project name (string)
    "description": "Project task management", // Project description (string)
    "version": "1.0.0", // Configuration version (string)
    "tasksResultOutputDir": "src/task-results" // Directory path for storing task result files (string, optional)
  },
  "tasks": [
    {
      "number": 1, // Task number (float, e.g., 1, 1.1, 2.5) - Unique identifier for the task
      "key": "setup-project", // Task key (string) - Unique identifier for the task
      "title": "Project Setup", // Task title (string)
      "description": "Initialize project structure", // Task description (string) - Brief description of the task
      "status": "pending", // Task status (string) - Must be one of: pending, done, in-progress, review, deferred, cancelled
      "precondition": [], // Array of task keys or numbers that must be completed before this task can be executed (array of strings/numbers)
      "priority": "high", // Task priority (string) - Must be one of: low, medium, high
      "details": "", // Additional task details (string, optional) - Detailed explanation or file path for task requirements
      "result": "", // Expected result of the task (string, optional)
      "testStrategy": "", // Strategy for testing this task (string, optional)
      "subtasks": [
        // Array of subtasks (array, optional)
        {
          "number": 1.1, // Subtask number (float) - Unique identifier for the subtask
          "key": "create-folders", // Subtask key (string) - Unique identifier for the subtask
          "title": "Create Folder Structure", // Subtask title (string)
          "description": "Set up the basic directory structure", // Subtask description (string) - Brief description of the subtask
          "details": "", // Additional subtask details (string, optional) - Detailed explanation or file path for subtask requirements
          "status": "pending", // Subtask status (string) - Must be one of: pending, done, in-progress, review, deferred, cancelled
          "precondition": [], // Array of task/subtask keys or numbers that must be completed before this subtask can be executed (array of strings/numbers)
          "priority": "high", // Subtask priority (string) - Must be one of: low, medium, high
          "result": "", // Expected result of the subtask (string, optional)
          "testStrategy": "" // Strategy for testing this subtask (string, optional)
        }
      ]
    }
  ]
}

Field Value Enumerations

  • status: pending, done, in-progress, review, deferred, cancelled
  • priority: low, medium, high

Field Descriptions

  • description: Brief description of the task or subtask
  • details: Detailed explanation or file path for task/subtask requirements (supports path format for referencing external documents)

Available Tools

set_task_status

Update the status of one or more tasks or subtasks.

Parameters:

  • identifier: Task key or number (supports comma-separated multiple values)
  • status: New status (pending|done|in-progress|review|deferred|cancelled)

next_task

Find the next executable task based on priorities and preconditions.

Returns the highest priority task that has all dependencies satisfied.

initialize_tasks

Initialize project by resetting all tasks and subtasks status to "pending" and result to empty string.

This tool will:

  • Reset all task and subtask status fields to "pending"
  • Reset all task and subtask result fields to empty string ""
  • Save the updated configuration automatically

No parameters required.

Available MCP Prompts

get-task-rules

Retrieves complete task management system rules and guidelines with dynamic configuration replacement.

This prompt provides comprehensive documentation for task management operations, automatically replacing configuration placeholders with values from your task configuration file.

Usage: Use /task-manager-mcp:get-task-rules (MCP) and follow the provided instructions to execute task management operations.

⚠️ Important: /task-manager-mcp:get-task-rules (MCP) is the main entry point for the entire MCP system to function properly. Start with this prompt to get comprehensive guidance for all task management operations.

Related Projects

This project draws inspiration from claude-task-master by @eyaltoledano, a comprehensive AI-powered task management system for development with Claude.

Key Differences

While both projects focus on task management for AI-driven development, this task-manager-mcp project has a different scope:

Feature claude-task-master task-manager-mcp
Architecture Full-featured CLI tool with AI integration Lightweight MCP server focused on protocol compliance
Scope Complete task management ecosystem with PRD parsing, AI research, and code generation Core task status tracking and dependency resolution
AI Integration Built-in support for multiple AI providers (Claude, OpenAI, Gemini, etc.) Protocol-agnostic, works with any MCP-compatible AI client
Dependencies Rich feature set with external API dependencies Standalone with minimal dependencies
Target Use Case End-to-end project management and AI-assisted development Simple task tracking service for integration into existing workflows

When to Choose Which

  • Choose claude-task-master if you want a complete AI-powered development workflow with PRD parsing, research capabilities, and direct AI integration
  • Choose task-manager-mcp if you need a lightweight, protocol-compliant task management service that integrates with your existing MCP setup

Both projects complement each other in the ecosystem of AI-assisted development tools.

License

ISC

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选