
Task Manager MCP Server
This MCP server enables agents to manage complex tasks by providing tools for registration, complexity assessment, breakdown into subtasks, and status tracking throughout the task lifecycle.
Tools
assess_task
A tool to assess the complexity and structure of a task. A task can only be assessed if it hasn't been started yet.
task_status
A tool to update the status of a task. Must be used when beginning and completing a task. A task must be assessed before it can be started. A task's parent task must be in progress first for subtasks to be started or completed.
register_task
A tool to register a new task that must be performed. Can optionally be part of a parent task, or specify dependent tasks that must be completed before this task can be performed.
README
Task Manager MCP Server
This MCP server allows agents to manage tasks, including registering tasks, assessing their complexity, breaking down into subtasks, and updating their status. It provides structured task management capabilities for agents working on complex multi-step problems.
Tools
-
register_task
- A tool to register a new task that must be performed
- Inputs:
taskId
(string): The unique identifier for this tasktitle
(string): A concise title for this taskdescription
(string): A detailed description of this taskgoal
(string): The overall goal of this taskparentTaskId
(string, optional): The identifier of the parent task this task belongs to, if applicable. Must be provided if this task is a subtask of another taskdependsOnCompletedTaskIds
(array of strings, optional): A list of task identifiers this task depends on. Must be provided if this task can't be started before all of the dependent tasks are complete
- Returns: Task registration confirmation with task ID, current status ("not-started"), parent task ID, dependencies, and assessment requirement
-
assess_task
- A tool to assess the complexity and structure of a task (can only be assessed if it hasn't been started yet)
- Inputs:
taskId
(string): The unique identifier for this taskparentTaskId
(string, optional): The identifier of the parent task this task belongs to, if applicablecurrentStatus
(enum): The current status of the task (must be "not-started")complexityAssessment
(string): A detailed assessment of this task's complexity, describing if it can be performed all at once or requires multiple discrete subtaskscomplexityAssessmentOutcomeSubtasks
(array of objects, optional): A list of discrete subtasks that must be performed to complete this task, each containing:taskId
(string): A unique identifier for this subtasktitle
(string): A concise title for this subtaskdescription
(string): A detailed description of this subtaskgoal
(string): The overall goal of this subtaskmissingKnowledge
(array of objects, optional): A list of specific knowledge or information that is missing and must be researched, each containing:knowledgeId
(string): The unique identifier for this knowledgetitle
(string): A concise title for this knowledgedescription
(string): A detailed description of this knowledge
- Returns: Assessment confirmation with assessment ID, task ID, parent task ID, and list of tasks that need registration (including knowledge acquisition tasks)
-
task_status
- A tool to update the status of a task (must be used when beginning and completing tasks)
- Inputs:
taskId
(string): The unique identifier of this taskassessmentId
(string): The unique identifier of the complexity and structure assessment for this task (must be acquired using 'assess_task' before starting)currentStatus
(enum): The current status - "not-started", "in-progress", or "complete"parentTask
(object, optional): Details about the parent task, containing:taskId
(string): The unique identifier of the parent taskcurrentStatus
(enum): The current status of the parent task
dependsOnTasks
(array of objects, optional): A list of tasks this task depends on, each containing:taskId
(string): The unique identifier of the dependent taskcurrentStatus
(enum): The current status of the dependent task
outcomeDetails
(string, optional): Details about the outcome of this task (required if status is complete)recommendedNextTaskId
(string, optional): The identifier of the next recommended task to perform after this one (only allowed if status is complete)
- Returns: Status update confirmation with current task state including all provided parameters
Usage with Claude Desktop (uses stdio Transport)
Add to your claude_desktop_config.json
:
{
"mcpServers": {
"task-manager": {
"command": "npx",
"args": [
"-y",
"@blizzy/mcp-task-manager"
]
}
}
}
Usage with VS Code
For quick installation, use of of the one-click install buttons below.
For manual installation, add the following JSON block to your User Settings (JSON) file in VS Code. You can do this by pressing Ctrl + Shift + P
and typing Preferences: Open User Settings (JSON)
.
Optionally, you can add it to a file called .vscode/mcp.json
in your workspace. This will allow you to share the configuration with others.
Note that the
mcp
key is not needed in the.vscode/mcp.json
file.
NPX
{
"mcp": {
"servers": {
"task-manager": {
"command": "npx",
"args": ["-y", "@blizzy/mcp-task-manager"]
}
}
}
}
Running from source with HTTP+SSE Transport (deprecated as of 2025-03-26)
pnpm install
pnpm run start:sse
Run from source with Streamable HTTP Transport
pnpm install
pnpm run start:streamableHttp
Running as an installed package
Install
npm install -g @blizzy/mcp-task-manager@latest
Run the default (stdio) server
npx @blizzy/mcp-task-manager
Or specify stdio explicitly
npx @blizzy/mcp-task-manager stdio
Run the SSE server
npx @blizzy/mcp-task-manager sse
Run the streamable HTTP server
npx @blizzy/mcp-task-manager streamableHttp
License
This package is licensed under the MIT license.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。