Task Master
A task management system for AI-driven development with Claude, designed to work seamlessly with Cursor AI and other code editors via MCP.
README
Task Master 
By @eyaltoledano, @RalphEcom & @jasonzhou1993
A task management system for AI-driven development with Claude, designed to work seamlessly with Cursor AI.
Documentation
For more detailed information, check out the documentation in the docs directory:
- Configuration Guide - Set up environment variables and customize Task Master
- Tutorial - Step-by-step guide to getting started with Task Master
- Command Reference - Complete list of all available commands
- Task Structure - Understanding the task format and features
- Example Interactions - Common Cursor AI interaction examples
- Migration Guide - Guide to migrating to the new project structure
Quick Install for Cursor 1.0+ (One-Click)
📋 Click the copy button (top-right of code block) then paste into your browser:
cursor://anysphere.cursor-deeplink/mcp/install?name=taskmaster-ai&config=eyJjb21tYW5kIjoibnB4IiwiYXJncyI6WyIteSIsIi0tcGFja2FnZT10YXNrLW1hc3Rlci1haSIsInRhc2stbWFzdGVyLWFpIl0sImVudiI6eyJBTlRIUk9QSUNfQVBJX0tFWSI6IllPVVJfQU5USFJPUElDX0FQSV9LRVlfSEVSRSIsIlBFUlBMRVhJVFlfQVBJX0tFWSI6IllPVVJfUEVSUExFWElUWV9BUElfS0VZX0hFUkUiLCJPUEVOQUlfQVBJX0tFWSI6IllPVVJfT1BFTkFJX0tFWV9IRVJFIiwiR09PR0xFX0FQSV9LRVkiOiJZT1VSX0dPT0dMRV9LRVlfSEVSRSIsIk1JU1RSQUxfQVBJX0tFWSI6IllPVVJfTUlTVFJBTF9LRVlfSEVSRSIsIk9QRU5ST1VURVJfQVBJX0tFWSI6IllPVVJfT1BFTlJPVVRFUl9LRVlfSEVSRSIsIlhBSV9BUElfS0VZIjoiWU9VUl9YQUlfS0VZX0hFUkUiLCJBWlVSRV9PUEVOQUlfQVBJX0tFWSI6IllPVVJfQVpVUkVfS0VZX0hFUkUiLCJPTExBTUFfQVBJX0tFWSI6IllPVVJfT0xMQU1BX0FQSV9LRVlfSEVSRSJ9fQo=
Note: After clicking the link, you'll still need to add your API keys to the configuration. The link installs the MCP server with placeholder keys that you'll need to replace with your actual API keys.
Requirements
Taskmaster utilizes AI across several commands, and those require a separate API key. You can use a variety of models from different AI providers provided you add your API keys. For example, if you want to use Claude 3.7, you'll need an Anthropic API key.
You can define 3 types of models to be used: the main model, the research model, and the fallback model (in case either the main or research fail). Whatever model you use, its provider API key must be present in either mcp.json or .env.
At least one (1) of the following is required:
- Anthropic API key (Claude API)
- OpenAI API key
- Google Gemini API key
- Perplexity API key (for research model)
- xAI API Key (for research or main model)
- OpenRouter API Key (for research or main model)
Using the research model is optional but highly recommended. You will need at least ONE API key. Adding all API keys enables you to seamlessly switch between model providers at will.
Quick Start
Option 1: MCP (Recommended)
MCP (Model Control Protocol) lets you run Task Master directly from your editor.
1. Add your MCP config at the following path depending on your editor
| Editor | Scope | Linux/macOS Path | Windows Path | Key |
|---|---|---|---|---|
| Cursor | Global | ~/.cursor/mcp.json |
%USERPROFILE%\.cursor\mcp.json |
mcpServers |
| Project | <project_folder>/.cursor/mcp.json |
<project_folder>\.cursor\mcp.json |
mcpServers |
|
| Windsurf | Global | ~/.codeium/windsurf/mcp_config.json |
%USERPROFILE%\.codeium\windsurf\mcp_config.json |
mcpServers |
| VS Code | Project | <project_folder>/.vscode/mcp.json |
<project_folder>\.vscode\mcp.json |
servers |
Manual Configuration
Cursor & Windsurf (mcpServers)
{
"mcpServers": {
"taskmaster-ai": {
"command": "npx",
"args": ["-y", "--package=task-master-ai", "task-master-ai"],
"env": {
"ANTHROPIC_API_KEY": "YOUR_ANTHROPIC_API_KEY_HERE",
"PERPLEXITY_API_KEY": "YOUR_PERPLEXITY_API_KEY_HERE",
"OPENAI_API_KEY": "YOUR_OPENAI_KEY_HERE",
"GOOGLE_API_KEY": "YOUR_GOOGLE_KEY_HERE",
"MISTRAL_API_KEY": "YOUR_MISTRAL_KEY_HERE",
"OPENROUTER_API_KEY": "YOUR_OPENROUTER_KEY_HERE",
"XAI_API_KEY": "YOUR_XAI_KEY_HERE",
"AZURE_OPENAI_API_KEY": "YOUR_AZURE_KEY_HERE",
"OLLAMA_API_KEY": "YOUR_OLLAMA_API_KEY_HERE"
}
}
}
}
🔑 Replace
YOUR_…_KEY_HEREwith your real API keys. You can remove keys you don't use.
VS Code (servers + type)
{
"servers": {
"taskmaster-ai": {
"command": "npx",
"args": ["-y", "--package=task-master-ai", "task-master-ai"],
"env": {
"ANTHROPIC_API_KEY": "YOUR_ANTHROPIC_API_KEY_HERE",
"PERPLEXITY_API_KEY": "YOUR_PERPLEXITY_API_KEY_HERE",
"OPENAI_API_KEY": "YOUR_OPENAI_KEY_HERE",
"GOOGLE_API_KEY": "YOUR_GOOGLE_KEY_HERE",
"MISTRAL_API_KEY": "YOUR_MISTRAL_KEY_HERE",
"OPENROUTER_API_KEY": "YOUR_OPENROUTER_KEY_HERE",
"XAI_API_KEY": "YOUR_XAI_KEY_HERE",
"AZURE_OPENAI_API_KEY": "YOUR_AZURE_KEY_HERE"
},
"type": "stdio"
}
}
}
🔑 Replace
YOUR_…_KEY_HEREwith your real API keys. You can remove keys you don't use.
2. (Cursor-only) Enable Taskmaster MCP
Open Cursor Settings (Ctrl+Shift+J) ➡ Click on MCP tab on the left ➡ Enable task-master-ai with the toggle
3. (Optional) Configure the models you want to use
In your editor's AI chat pane, say:
Change the main, research and fallback models to <model_name>, <model_name> and <model_name> respectively.
4. Initialize Task Master
In your editor's AI chat pane, say:
Initialize taskmaster-ai in my project
5. Make sure you have a PRD (Recommended)
For new projects: Create your PRD at .taskmaster/docs/prd.txt
For existing projects: You can use scripts/prd.txt or migrate with task-master migrate
An example PRD template is available after initialization in .taskmaster/templates/example_prd.txt.
[!NOTE] While a PRD is recommended for complex projects, you can always create individual tasks by asking "Can you help me implement [description of what you want to do]?" in chat.
Always start with a detailed PRD.
The more detailed your PRD, the better the generated tasks will be.
6. Common Commands
Use your AI assistant to:
- Parse requirements:
Can you parse my PRD at scripts/prd.txt? - Plan next step:
What's the next task I should work on? - Implement a task:
Can you help me implement task 3? - View multiple tasks:
Can you show me tasks 1, 3, and 5? - Expand a task:
Can you help me expand task 4? - Research fresh information:
Research the latest best practices for implementing JWT authentication with Node.js - Research with context:
Research React Query v5 migration strategies for our current API implementation in src/api.js
More examples on how to use Task Master in chat
Option 2: Using Command Line
Installation
# Install globally
npm install -g task-master-ai
# OR install locally within your project
npm install task-master-ai
Initialize a new project
# If installed globally
task-master init
# If installed locally
npx task-master init
This will prompt you for project details and set up a new project with the necessary files and structure.
Common Commands
# Initialize a new project
task-master init
# Parse a PRD and generate tasks
task-master parse-prd your-prd.txt
# List all tasks
task-master list
# Show the next task to work on
task-master next
# Show specific task(s) - supports comma-separated IDs
task-master show 1,3,5
# Research fresh information with project context
task-master research "What are the latest best practices for JWT authentication?"
# Generate task files
task-master generate
Troubleshooting
If task-master init doesn't respond
Try running it with Node directly:
node node_modules/claude-task-master/scripts/init.js
Or clone the repository and run:
git clone https://github.com/eyaltoledano/claude-task-master.git
cd claude-task-master
node scripts/init.js
Contributors
<a href="https://github.com/eyaltoledano/claude-task-master/graphs/contributors"> <img src="https://contrib.rocks/image?repo=eyaltoledano/claude-task-master" alt="Task Master project contributors" /> </a>
Star History
Licensing
Task Master is licensed under the MIT License with Commons Clause. This means you can:
✅ Allowed:
- Use Task Master for any purpose (personal, commercial, academic)
- Modify the code
- Distribute copies
- Create and sell products built using Task Master
❌ Not Allowed:
- Sell Task Master itself
- Offer Task Master as a hosted service
- Create competing products based on Task Master
See the LICENSE file for the complete license text and licensing details for more information.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。