
tasksync-mcp
MCP server to give new instructions to agent while its working. It uses the get_feedback tool to collect your input from the feedback.md file in the workspace, which is sent back to the agent when you save.
README
TaskSync MCP Server
This is an MCP server that helps with feedback-oriented development workflows in AI-assisted development by letting users give feedback while the agent is working. It uses the get_feedback
tool to collect your input from the feedback.md
file in the workspace, which is sent back to the agent when you save. By guiding the AI with feedback instead of letting it make speculative operations, it reduces costly requests and makes development more efficient. With an additional tool that allows the agent to view images in the workspace.
🌟 Key Features
🔄 Continuous Review Feedback
- get_feedback tool that reads
feedback.md
for real-time feedback - Automatically creates
feedback.md
if it doesn't exist in the workspace - File watcher automatically detects changes and notifies waiting processes
- Essential for iterative development and user feedback loops
🖼️ Media Processing
- view_media tool for images files with base64 encoding
- Supports image formats: PNG, JPEG, GIF, WebP, BMP, SVG
- Efficient streaming for large files with proper MIME type detection
🛠️ Quick Setup
</details>
Global Setup. Add to mcp.json
:
{
"mcpServers": {
"tasksync": {
"command": "npx",
"args": ["-y", "tasksync-mcp@latest", "/path/to/directory"]
}
}
}
For VS Code:
{
"servers": {
"tasksync": {
"command": "npx",
"type": "stdio",
"args": ["-y", "tasksync-mcp@latest", "/path/to/directory"]
}
}
}
</details>
🔨 Available Tools
- get_feedback - Read feedback.md file for user review/feedback (creates file if missing)
- view_media - Read image (returns base64 with MIME type)
Workflow Example
- User Prompt + TaskSync MCP Rules - User provides a request/task
- Agent Response - Agent responds to the prompt AND calls
mcp_tasksync_get_feedback
tool - Agent Acts Accordingly - Based on feedback, agent will call the tool again if needing:
- More clarification
- Confirmation
- Information
- New task assignment
- Additional feedback
- Continuous Loop - After completing user tasks/questions, agent calls the tool again
- Loop Forever - This continues indefinitely until user stops the chat
graph TD
A[User Prompt + TaskSync MCP Rules] --> B[Agent Response to Prompt]
B --> C[Agent Calls get_feedback Tool]
C --> D[Agent Acts on Feedback]
D --> E{Need More Info?}
E -->|Yes - Clarification| F[Call get_feedback Tool]
E -->|Yes - Confirmation| G[Call get_feedback Tool]
E -->|Yes - New Task| H[Call get_feedback Tool]
E -->|Yes - More Feedback| I[Call get_feedback Tool]
E -->|Task Complete| J[Call get_feedback Tool Again]
F --> D
G --> D
H --> D
I --> D
J --> D
D --> K[Continue Loop Forever]
K --> C
class A userAction
class B,D agentAction
class C,F,G,H,I,J feedback
class E,K loop
🛟 Best Practices
Agent Rules for Optimal Performance
For best results with TaskSync, add these rules to your AI agent configuration:
### MCP TaskSync `get_feedback` Tool Instructions
Look for feedback.md file first before using the tool if not found you make one.
**USAGE RULES:**
1. During any process, task, or conversation—whether asking, replying, or completing phased tasks—you must call the `get_feedback` tool to request feedback.
2. Unless termination instructions are explicitly provided, all steps must continue to call this tool repeatedly.
3. Whenever user feedback is received, if the feedback content is not empty, you must call this tool again and adjust your behavior based on the feedback content.
4. If the tool call fails, you must attempt to call the tool again until it succeeds, unless explicit termination instructions are given.
5. Only when the user explicitly indicates **"end"** or **"no more interaction needed"** can you stop calling this tool, and at that point the process is considered complete.
**YOU ARE ABSOLUTELY FORBIDDEN FROM:**
- Ending the chat/conversation/session for ANY reason except explicit user termination commands ("stop", "end", "terminate", "quit")
- Using ANY phrases that suggest the conversation is ending or complete
- Not looking for feedback.md file in workspace first before calling the `get_feedback` tool
- Stopping the `get_feedback` cycle under any circumstances
- Acting like the conversation is finished
License
This MCP server is licensed under the MIT License. This means you are free to use, modify, and distribute the software, subject to the terms and conditions of the MIT License. For more details, please see the LICENSE file in the project repository.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。