Tax Alert Chatbot MCP Server
A server that powers an interactive chatbot for querying and managing tax alerts in a SQLite database using Google Gemini models and LangGraph's REACT agent framework.
README
📊 Tax Alert Chatbot (MCP-Powered)
An interactive Streamlit-based chatbot that connects to a custom MCP (Model Context Protocol) server. It allows users to query, insert, update, and delete tax alerts stored in a local SQLite database. The app uses LangGraph’s REACT agent framework with Google Gemini models and supports both SSE and STDIO transport modes.
<img width="947" alt="image" src="https://github.com/user-attachments/assets/51b19e66-e780-4281-af02-b05e23690e1d" />
📁 Project Structure
.
├── client.py # Frontend Streamlit Chat UI
├── server.py # MCP tool & Backend FastMCP SQLite server
├── dummy_tax_alerts.db # SQLite database (if present)
├── .env # Environment variables
├──.venv # virtual environment
└── README.md # Documentation
🚀 Features
- 🤖 Conversational interface with Google Gemini 1.5 models
- 🧠 REACT-style reasoning agent via LangGraph
- 🛠️ Tool execution via MCP server
- 📄 Query, insert, update, and delete operations on tax alert data
- 🔄 Real-time responses using SSE or STDIO
🛠️ Tech Stack
| Layer | Tools / Frameworks |
|---|---|
| Frontend | Streamlit, LangGraph, LangChain |
| Backend | FastMCP, SQLite |
| LLM Provider | Google Gemini 1.5 Flash / Pro (via LangChain) |
| Transport | SSE (Server-Sent Events) or STDIO |
| Runtime | Python 3.10+, venv, python-dotenv |
⚙️ Setup Instructions
1. Clone the Repository
git clone https://github.com/your-repo/tax-alert-chatbot.git
cd tax-alert-chatbot
2. Create and Activate Virtual Environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
3. Install Dependencies
pip install -r requirements.txt
(Optional: Split into client/requirements.txt and server/requirements.txt if needed.)
4. Configure Environment Variables
Create a .env file in the root folder:
GOOGLE_API_KEY=your_google_api_key
ALERTS_DB=dummy_tax_alerts.db
🗃️ SQLite Schema
CREATE TABLE tax_alerts (
id INTEGER PRIMARY KEY AUTOINCREMENT,
title TEXT,
date TEXT,
jurisdiction TEXT,
topics TEXT,
summary TEXT,
full_text TEXT,
source_url TEXT,
tags TEXT,
created_at TIMESTAMP,
updated_at TIMESTAMP
);
🔧 MCP Server Tools
| Tool Name | Description |
|---|---|
query(sql) |
Run SELECT queries on the tax_alerts table |
insert(...) |
Insert a new tax alert into the database |
update(...) |
Update existing tax alerts based on a condition |
delete(...) |
Delete tax alerts using WHERE conditions |
schema_info() |
Return schema and column info of the table |
▶️ Running the Server
python server.py
or
python server.py --transport stdio
Make sure your .env contains a valid path to dummy_tax_alerts.db.
💬 Running the Client (Chat UI)
streamlit run client.py
It will automatically open streamlit localhost:8501 in your browser.
⚙️ Configuration (via Sidebar) Gemini Model: Choose between gemini-1.5-flash or gemini-1.5-pro
Server Mode: Only single server supported
Server Type: SSE or STDIO
Server URL: Required only for SSE mode
Clear Chat / Show Tool Executions: Debug & reset tools
🧪 Sample Interaction
User Input:
"Show me tax alerts from 2024 in California"
Agent Response (Tool Call):
SELECT * FROM tax_alerts WHERE jurisdiction='California' AND date LIKE '2024%'
🧼 Debugging & Notes MCP server must be running before starting the client.
Full traceback is shown in the client if errors occur.
Ensure correct database path in .env.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。