Team MCP Server

Team MCP Server

Provides team information retrieval capabilities through HTTP streaming transport. Built with FastMCP 2.0+ and includes ngrok integration for easy testing and development.

Category
访问服务器

README

Team MCP Server

A Model Context Protocol (MCP) server built with FastMCP 2.0+ that provides team information through HTTP streaming transport.

Quick Start

# Clone the repository
git clone <your-repo-url>
cd mcp-server

# Install uv (if not already installed)
curl -LsSf https://astral.sh/uv/install.sh | sh

# Install dependencies
uv sync

# Run the server
uv run python src/team_server.py

# Server is now running at http://localhost:8000/mcp

Test it with MCP Inspector:

# Install MCP Inspector (one-time setup)
npm install -g @modelcontextprotocol/inspector

# Run the inspector (in a new terminal)
npx @modelcontextprotocol/inspector http://localhost:8000/mcp

# Open browser to http://localhost:5173 to test your tools

That's it! Your MCP server is running and you can test it interactively with MCP Inspector.

Overview

This MCP server exposes tools for retrieving team information. It's designed for deployment on servers and includes ngrok integration for easy testing and development.

Prerequisites

  • Python 3.10 or higher
  • Either uv (recommended) or pip for package management
  • Node.js and npm (optional, for MCP Inspector)
  • ngrok account (optional, for remote testing)

Installation

Option 1: Using uv (Recommended)

# Install uv if you haven't already
curl -LsSf https://astral.sh/uv/install.sh | sh

# Install dependencies
uv sync

Option 2: Using pip

# Create virtual environment
python -m venv venv
source venv/bin/activate

# Install dependencies
pip install -r requirements.txt

Configuration

  1. Copy the example environment file:
cp .env.example .env
  1. Edit .env to configure:
    • MCP_HOST: Server host (default: 0.0.0.0)
    • MCP_PORT: Server port (default: 8000)
    • MCP_PATH: MCP endpoint path (default: /mcp)
    • NGROK_AUTH_TOKEN: Your ngrok auth token (optional)

Running the Server

Local Development

# Using uv
uv run python src/team_server.py

# Using pip
python src/team_server.py

The server will start on http://localhost:8000/mcp using HTTP streaming transport.

With ngrok Tunnel

For remote testing or exposing your local server to the internet:

# Using uv
uv run python scripts/run_with_ngrok.py

# Using pip
python scripts/run_with_ngrok.py

# Or tunnel only (if server is already running)
uv run python scripts/run_with_ngrok.py --tunnel-only

This will:

  1. Start the MCP server locally (unless --tunnel-only is used)
  2. Create an ngrok tunnel
  3. Display the public URL you can use to access your server remotely

API Documentation

Endpoint

  • URL: http://localhost:8000/mcp (or your configured host/port/path)
  • Transport: HTTP streaming (FastMCP 2.3+)
  • Protocol: Model Context Protocol

Available Tools

get_team_name

Returns the name of the team.

Parameters: None

Returns:

{
  "result": "team1"
}

Example Usage with MCP Client:

from fastmcp.client import Client

async with Client("http://localhost:8000/mcp") as client:
    result = await client.call_tool("get_team_name", {})
    print(result)  # Returns "team1"

Testing

Using MCP Inspector (Recommended)

MCP Inspector provides a web-based UI to test your MCP server's tools interactively.

  1. Install MCP Inspector globally:
npm install -g @modelcontextprotocol/inspector
  1. Start your MCP server:
uv run python src/team_server.py
  1. In a new terminal, run the Inspector:
npx @modelcontextprotocol/inspector http://localhost:8000/mcp
  1. Open your browser to the URL shown (typically http://localhost:5173)

  2. In the Inspector UI, you can:

    • View all available tools
    • Test the get_team_name tool interactively
    • See request/response details
    • Inspect the server's capabilities

Using the Test Client

  1. Start the server:
uv run python src/team_server.py
  1. Test with the provided test client:
uv run python test_client.py
  1. Or test with a remote URL using ngrok:
uv run python test_client.py https://your-ngrok-url.ngrok-free.app/mcp

Remote Testing with ngrok

  1. Start server with ngrok:
uv run python scripts/run_with_ngrok.py
  1. Use the displayed public URL (e.g., https://abc123.ngrok.io/mcp) to connect from any MCP client.

Development

Adding New Tools

To add new tools, edit src/team_server.py:

@mcp.tool()
def your_new_tool(param: str) -> str:
    """Description of your tool"""
    return f"Result for {param}"

Updating Dependencies

When adding new dependencies:

  1. Add to pyproject.toml
  2. Regenerate requirements.txt:
uv pip compile pyproject.toml > requirements.txt
  1. Install:
    • uv: uv sync
    • pip: pip install -r requirements.txt

Deployment

For production deployment:

  1. Set environment variables appropriately
  2. Use a process manager like systemd or supervisor
  3. Consider using a reverse proxy (nginx, Apache) for SSL termination
  4. Ensure firewall rules allow traffic on your configured port

Example systemd service

[Unit]
Description=Team MCP Server
After=network.target

[Service]
Type=simple
User=your-user
WorkingDirectory=/path/to/mcp-server
Environment="PATH=/usr/bin:/usr/local/bin"
ExecStart=/usr/bin/python /path/to/mcp-server/src/team_server.py
Restart=always

[Install]
WantedBy=multi-user.target

Troubleshooting

Server won't start

  • Check Python version: python --version (needs 3.10+)
  • Verify all dependencies are installed
  • Check if port 8000 is already in use

ngrok issues

  • Ensure you have an ngrok account and auth token
  • Check ngrok status at https://dashboard.ngrok.com
  • Verify firewall isn't blocking ngrok

MCP client can't connect

  • Verify server is running and accessible
  • Check the endpoint URL is correct
  • Ensure you're using HTTP streaming transport (not SSE)

License

MIT License - see LICENSE file for details

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选