Tempo Filler MCP Server
A Model Context Protocol server enabling AI assistants to interact with Tempo's time tracking system in JIRA for worklog retrieval, creation, and management.
README
Tempo Filler MCP Server
A Model Context Protocol (MCP) server for managing Tempo worklogs in JIRA. This server enables AI assistants to interact with Tempo's time tracking system, allowing for worklog retrieval, creation, bulk operations, and management.
Table of Contents
- Quick Start
- How This Was Built
- Features
- Installation
- Configuration
- Usage with AI Assistants
- Available Tools
- Example Interactions
- Real-World Usage Examples
- Development
- Security
- API Compatibility
- Troubleshooting
- License
- Contributing
Quick Start
-
Get the code:
# Clone the repository git clone https://github.com/TRANZACT/tempo-filler-mcp-server.git cd tempo-filler-mcp-server # OR download and extract the ZIP file from GitHub -
Build the server:
npm install && npm run build -
Configure your AI assistant with:
{ "servers": { "tempo-filler": { "type": "stdio", "command": "node", "args": ["/full/path/to/tempo-filler-mcp-server/dist/index.js"], "env": { "TEMPO_BASE_URL": "https://jira.company.com", "TEMPO_PAT": "your-personal-access-token" } } } } -
Test it: Ask your AI assistant "Get my worklogs for this week"
How This Was Built
This MCP server was built in just 3 hours using AI-powered development tools, demonstrating the power of modern AI-assisted coding:
Development Timeline
-
Specification Phase
- Created the complete technical specification using GitHub Copilot with Claude Sonnet 4
- Defined all API endpoints, data structures, and tool interfaces
- Refined requirements through iterative conversation
-
Implementation Phase
- Used VS Code with Claude Code to one-shot the entire implementation
- Generated complete TypeScript codebase, tool implementations, and client logic
- Implemented all core functionality in a single AI-assisted session
-
Refinement Phase
- Switched back to GitHub Copilot with Claude Sonnet 4 after hitting usage limits in Claude Code
- Fixed API payload formatting and authentication issues
- Debugged and polished the Tempo API integration
Key Success Factors
- Clear specification first: Having a detailed spec enabled effective one-shot implementation
- AI tool synergy: Different AI tools excelled at different phases of development
- Iterative refinement: Quick feedback loops with AI assistants for debugging
This project showcases how AI-powered development can dramatically accelerate the creation of robust, production-ready tools.
Features
- Get Worklogs: Retrieve worklogs for users with date range and issue filtering
- Create Worklogs: Add single worklog entries with automatic issue resolution
- Bulk Operations: Create multiple worklog entries efficiently using concurrent processing
- Delete Worklogs: Remove existing worklog entries
- Resource Access: Browse worklog data and recent issues
- Prompt Templates: Generate analysis prompts for worklog data
Installation
Prerequisites
- Node.js (version 16 or higher)
- npm (comes with Node.js)
- A JIRA instance with Tempo Timesheets plugin installed
- Personal Access Token for your JIRA account
Step-by-Step Setup
-
Get the source code:
# Option 1: Clone with Git git clone https://github.com/TRANZACT/tempo-filler-mcp-server.git cd tempo-filler-mcp-server # Option 2: Download ZIP # - Go to GitHub repository page # - Click "Code" → "Download ZIP" # - Extract and navigate to the folder -
Install dependencies:
npm install -
Build the server:
npm run build -
Get your JIRA credentials (see Authentication Setup below)
Configuration
The server requires environment variables for authentication and configuration:
Required Environment Variables
TEMPO_BASE_URL: Your JIRA instance URL (e.g.,https://jira.company.com)TEMPO_PAT: Personal Access Token for authentication
Optional Environment Variables
TEMPO_DEFAULT_HOURS: Default hours per workday (default: 8)
Creating a Personal Access Token (PAT)
- Log into your JIRA instance
- Go to Profile → Personal Access Tokens
- Click Create token
- Give it a name (e.g., "Tempo MCP Server")
- Set appropriate permissions (read/write access to issues and worklogs)
- Copy the token value for use in
TEMPO_PAT
Usage with AI Assistants
GitHub Copilot Configuration (VS Code)
Add to your MCP servers configuration file (e.g., mcp.json):
{
"servers": {
"tempo-filler": {
"type": "stdio",
"command": "node",
"args": [
"/full/path/to/tempo-filler-mcp-server/dist/index.js"
],
"env": {
"TEMPO_BASE_URL": "https://jira.company.com",
"TEMPO_PAT": "your-personal-access-token-here"
}
}
}
}
Claude Desktop Configuration
Add to your Claude Desktop config file:
{
"mcpServers": {
"tempo-filler": {
"command": "node",
"args": ["/full/path/to/tempo-filler-mcp-server/dist/index.js"],
"env": {
"TEMPO_BASE_URL": "https://jira.company.com",
"TEMPO_PAT": "your-personal-access-token"
}
}
}
}
Setup Steps
-
Build the server:
npm run build -
Find the full path to your
dist/index.jsfile:# Get the full path (use pwd on macOS/Linux, cd on Windows) pwd # Should show something like /Users/yourname/tempo-filler-mcp-server -
Add configuration to your AI assistant (use the full path +
/dist/index.js) -
Restart your AI assistant to load the MCP server
-
Test the connection: Ask "Get my worklogs for this week"
Authentication Setup
The server uses Personal Access Tokens (PAT) for secure authentication:
-
Generate a PAT in your JIRA instance:
- Go to Profile → Personal Access Tokens
- Create token with read/write permissions for issues and worklogs
- Copy the token value (you won't see it again)
-
Set environment variables:
TEMPO_BASE_URL: Your JIRA URL (e.g.,https://jira.company.com)TEMPO_PAT: Your personal access token
Available Tools
1. get_worklogs - Retrieve Time Logs
Retrieve worklogs for a date range with optional filtering.
Parameters:
startDate(string): Start date in YYYY-MM-DD formatendDate(string, optional): End date, defaults to startDateissueKey(string, optional): Filter by specific issue key
Example Usage:
"Get my July hours"
→ Returns: Total: 184h (23 entries)
• PROJ-1234: 184.0h (23 entries)
"Show me my worklogs for PROJ-1234 in July"
→ Filters results to specific issue
2. post_worklog - Log Single Entry
Create a new worklog entry for a specific issue and date.
Parameters:
issueKey(string): JIRA issue key (e.g., "PROJ-1234")hours(number): Hours worked (decimal, 0.1-24)startDate(string): Date in YYYY-MM-DD formatendDate(string, optional): End date for multi-day entriesbillable(boolean, optional): Whether time is billable (default: true)description(string, optional): Work description
Example Usage:
"Log 8 hours to PROJ-1234 for July 10th"
→ Returns: ✅ Worklog Created Successfully
Issue: PROJ-1234 - Example Project Task
Hours: 8h
Date: 2025-07-10
Worklog ID: 1211549
3. bulk_post_worklogs - Create Multiple Entries
Create multiple worklog entries efficiently with concurrent processing.
Parameters:
worklogs(array): Array of worklog objects:issueKey(string): JIRA issue keyhours(number): Hours workeddate(string): Date in YYYY-MM-DD formatdescription(string, optional): Work description
billable(boolean, optional): Whether time is billable for all entries
Example Usage:
"Post 8 hours a day every weekday from July 11 to 15 on PROJ-1234"
→ Returns: ✅ Bulk Worklog Creation Started
Processing 3 worklog entries...
✅ Successful: 3
❌ Failed: 0
📊 Total Hours: 24
"Fill all weekdays in July with 8 hours on PROJ-1234"
→ Creates 23 entries for all weekdays in the month
4. delete_worklog - Remove Entry
Delete an existing worklog entry by ID.
Parameters:
worklogId(string): Tempo worklog ID to delete
Example Usage:
"Delete worklog with ID 1211547"
→ Removes the specified worklog entry
Example Interactions
Viewing Your Time Logs
"Get my July hours"
→ Returns a summary of all worklogs for July with totals by issue and date
"Show me my worklogs for July 2025"
→ Uses get_worklogs to retrieve detailed worklog information
"What did I work on last week?"
→ Fetches worklogs for the previous week with issue breakdown
Creating Single Worklog Entries
"Log 8 hours to PROJ-1234 for July 10th"
→ Creates a single worklog entry:
✅ Issue: PROJ-1234 - Example Project Task
✅ Hours: 8h (billable)
✅ Date: 2025-07-10
✅ Worklog ID: 1211549
"Post 6.5 hours on PROJ-123 for today with description 'Bug fixes and testing'"
→ Uses post_worklog with custom description
Bulk Worklog Creation
"Post 8 hours a day every weekday from July 11 to 15 on PROJ-1234"
→ Creates 5 worklog entries (skips weekends):
✅ July 11 (Friday): 8h
✅ July 14 (Monday): 8h
✅ July 15 (Tuesday): 8h
Total: 24 hours across 3 weekdays
"Fill my timesheet for this week - 4 hours PROJ-1111 and 4 hours PROJ-2222 each day"
→ Uses bulk_post_worklogs with multiple issues per day
"Finish filling up the days until July 31st"
→ Automatically fills remaining weekdays in the month
Advanced Bulk Operations
"Log time for the entire month of July:
- PROJ-1234: 8 hours every weekday
- Skip weekends
- All time should be billable"
→ Creates 22 worklog entries for all weekdays in July
"Fill my Q2 timesheet with 8 hours daily split between:
- 60% on PROJ-1234 (development)
- 40% on PROJ-5678 (meetings)"
→ Calculates hours and creates entries for the quarter
Worklog Management
"Delete worklog with ID 1211547"
→ Removes the specified worklog entry
"Show me a summary of my July hours by issue"
→ Groups worklogs by issue with totals and percentages
Real-World Usage Examples
Based on successful implementation, here are practical scenarios:
Daily Time Logging
# Using VS Code with GitHub Copilot:
User: "Log 8 hours on PROJ-1234 for today"
AI: ✅ Worklog Created Successfully
Issue: PROJ-1234 - Example Project Task
Hours: 8h
Date: 2025-08-01
Worklog ID: 1211550
Time Spent: 1d
Monthly Time Filling
# Bulk operation for entire month:
User: "Fill all weekdays in July with 8 hours on PROJ-1234"
AI: ✅ Bulk Worklog Creation Started
Processing 23 worklog entries...
✅ Successful: 23
❌ Failed: 0
📊 Total Hours: 184
Time Tracking Analysis
# Monthly summary:
User: "Get my July hours"
AI: 📊 Total Hours: 184 hours (23 entries)
Breakdown by issue:
• PROJ-1234: 184.0h (23 entries)
Daily pattern: 8 hours per weekday
Completion: 100% (all weekdays filled)
Development
Project Structure
src/
├── index.ts # Main MCP server entry point
├── tempo-client.ts # Tempo API client with PAT auth
├── tools/ # Tool implementations
│ ├── get-worklogs.ts
│ ├── post-worklog.ts
│ ├── bulk-post.ts
│ └── delete-worklog.ts
└── types/ # TypeScript type definitions
├── tempo.ts
├── mcp.ts
└── index.ts
Build Commands
npm run build: Compile TypeScript to JavaScriptnpm run dev: Build and run the servernpm run typecheck: Type checking without compilation
Testing
The server can be tested using the MCP Inspector or by integrating with compatible AI assistants.
Security
- Personal Access Tokens are used for secure authentication
- No credentials are logged or exposed
- Input validation is performed on all parameters
- Rate limiting and error handling protect against API abuse
API Compatibility
This server is compatible with:
- JIRA Core/Software 8.14+
- Tempo Timesheets 4.x
- Model Context Protocol specification
Troubleshooting
Setup Issues
Server not found / Path issues:
- Ensure you're using the full absolute path to
dist/index.js - On Windows:
C:\Users\YourName\tempo-filler-mcp-server\dist\index.js - On macOS/Linux:
/Users/YourName/tempo-filler-mcp-server/dist/index.js - Verify the file exists:
ls dist/index.js(should show the file)
Build failures:
- Check Node.js version:
node --version(should be 16+) - Clear cache and retry:
npm cache clean --force && npm install && npm run build - Check for error messages in the build output
AI Assistant not loading the server:
- Restart your AI assistant completely after adding the configuration
- Check the configuration file syntax (valid JSON)
- Verify environment variables are set correctly
Authentication Issues
- Verify your Personal Access Token is valid and has proper permissions
- Check that your JIRA instance URL is correct
- Ensure Tempo is properly installed and configured in your JIRA instance
Connection Issues
- Verify network connectivity to your JIRA instance
- Check firewall and proxy settings
- Confirm the JIRA instance is accessible from your environment
Permission Issues
- Ensure your user account has permission to log time to the specified issues
- Verify Tempo is configured to allow time logging for your user
- Check project permissions in JIRA
License
ISC License - see package.json for details
Contributing
Contributions are welcome! Please follow the existing code style and ensure all tools work correctly with real Tempo API endpoints.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。