
Terminal Control MCP
Enables AI agents to interact with terminal-based TUI applications by capturing visual terminal output as PNG screenshots and simulating keyboard input through a virtual X11 display.
README
Terminal Control MCP
A Model Context Protocol (MCP) server that enables AI agents to interact with terminal-based TUI applications through a virtual X11 display approach.
Overview
This project provides a comprehensive solution for controlling terminal applications programmatically using:
- Xvfb for headless virtual X11 display
- xterm for terminal emulation
- xdotool for input simulation and window management
- ImageMagick for PNG screenshot capture
The system captures actual visual terminal output as PNG screenshots, making it ideal for AI agents that need to see and interact with terminal applications.
Features
- Virtual Display Management: Headless X11 display using Xvfb
- Input Simulation: Send keyboard input and text to terminal applications
- Screenshot Capture: Take PNG screenshots of terminal output
- Window Management: Reliable window detection and focus handling
- Resource Cleanup: Proper process management with timeout handling
System Requirements
The following system packages must be installed:
# Ubuntu/Debian
sudo apt-get install xvfb xterm xdotool imagemagick
# CentOS/RHEL/Fedora
sudo yum install xorg-x11-server-Xvfb xterm xdotool ImageMagick
Installation
This project uses the uv
package manager:
# Clone the repository
git clone <repository-url>
cd terminal-control-mcp
# Install dependencies
uv sync
# Activate virtual environment
source .venv/bin/activate
Quick Start
Running the Example
Try the included htop example to see the system in action:
python examples/example_htop.py
This will:
- Launch htop in a virtual xterm session
- Press F3 to open the search dialog
- Type "python" as a search term
- Capture PNG screenshots at each step
- Clean up all processes
Basic Usage
from examples.example_htop import XTermSession
# Create a session
session = XTermSession(width=1920, height=1080)
try:
# Start virtual display and terminal
session.start_virtual_display()
session.start_xterm("your-command-here")
# Take a screenshot
session.take_screenshot("output.png")
# Send input
session.send_key("F1")
session.send_text("hello world")
finally:
session.cleanup()
Architecture
Core Components
-
XTermSession Class: The main interface for terminal control
- Manages Xvfb virtual display lifecycle
- Spawns and controls xterm processes
- Handles input simulation via xdotool
- Captures screenshots using ImageMagick
-
Virtual Display Approach: Unlike direct TTY manipulation, this system:
- Creates a real X11 environment with Xvfb
- Launches actual xterm instances
- Captures genuine visual output as PNG files
- Provides reliable input simulation
Key Methods
start_virtual_display()
: Initialize Xvfb virtual displaystart_xterm(command)
: Launch xterm with specified commandsend_key(key)
: Send special keys (F1, Escape, etc.)send_text(text)
: Send alphanumeric text inputtake_screenshot(filename)
: Capture PNG screenshotcleanup()
: Properly terminate all processes
Development
Project Structure
terminal-control-mcp/
├── src/terminal_control_mcp/ # Main MCP server implementation (planned)
├── examples/
│ ├── example_htop.py # Reference implementation
│ └── README.md
├── tests/ # Test suite
├── pyproject.toml # Project configuration
└── CLAUDE.md # Development guidelines
Development Commands
# Run the main application
python main.py
# Run the htop example
python examples/example_htop.py
# Activate virtual environment
source .venv/bin/activate
MCP Server Implementation (Planned)
The full MCP server will provide these tools:
terminal_launch
: Start a new terminal sessionterminal_input
: Send keyboard/text inputterminal_capture
: Take PNG screenshotterminal_close
: Clean up terminal session
Technical Details
Window Detection
The system uses multiple fallback strategies for reliable window ID detection:
search_methods = [
['xdotool', 'search', '--class', 'XTerm'],
['xdotool', 'search', '--name', 'xterm'],
['xdotool', 'search', '--class', 'xterm'],
['xdotool', 'getactivewindow']
]
Screenshot Capture
Uses ImageMagick's import
command for reliable PNG capture:
subprocess.run(['import', '-window', 'root', filename], env=env)
Resource Management
Implements proper cleanup with timeout handling:
def cleanup(self):
if self.xterm_proc:
self.xterm_proc.terminate()
try:
self.xterm_proc.wait(timeout=5)
except subprocess.TimeoutExpired:
self.xterm_proc.kill()
Contributing
[TBD]
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。